Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.
1. Общие сведения о холодильных машинах
Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).
Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.
Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.
Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.
Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.
2. Термодинамические циклы холодильных установок
Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.
Чтобы отводимая от «холодного» источника теплота могла быть отдана «горячему» источнику (обычно — окружающему воздуху), необходимо поднять температуру рабочего тела выше температуры окружающей среды. Это достигается быстрым (адиабатным) сжатием рабочего тела с затратой работы или подводом к нему теплоты извне.
В обратных циклах количество отводимой от рабочего тела теплоты всегда больше количества подводимой теплоты, а суммарная работа сжатия больше суммарной работы расширения. Благодаря этому установки, работающие по подобным циклам, являются потребителями энергии. Такие идеальные термодинамические циклы холодильных установок уже рассмотрены выше в пункте 10 темы 3. Холодильные установки различаются применяемым рабочим телом и принципом действия. Передача теплоты от «холодного» источника «горячему» может осуществляться за счет затраты работы или же затрат теплоты.
2.1. Воздушные холодильные установки
В воздушных холодильных установках в качестве рабочего тела используется воздух, а передача теплоты от «холодного» источника «горячему» осуществляется за счет затраты механической энергии. Необходимое для охлаждения холодильной камеры понижение температуры воздуха достигается в этих установках в результате быстрого его расширения, при котором время на теплообмен ограничено, и работа в основном совершается за счет внутренней энергии, в связи, с чем температура рабочего тела падает. Схема воздушной холодильной установки показана на рис 7.14
Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 — 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается — теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра — детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.
2.2. Парокомпрессорные холодильные установки
В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.
Физические параметры хладагентов
Температура кипения tкип при давлении р = 0,1 МПа, °С
Критическая температура, °С
Температура замерзания, tзам, °С
Скрытая теплота парообразования при tкип, кДж/кг
Компрессоры холодильных машин
Холодильные компрессоры
В этой статье вы узнаете об основных типах холодильных компрессоров:
Где купить холодильный компрессор в вашем регионе вы найдете в справочнике холодильных компаний или разместите тендер на сайте:
Каталог производителей холодильных компрессоров
Холодильные компрессоры
Холодильные компрессоры обеспечивают циркуляцию хладагента в системе и, в отличие от газовых компрессоров, самостоятельно вне холодильных машин не применяются.
Отличия условий работы компрессоров в составе холодильных машин от условий работы компрессорных машин общего назначения:
работают в широком диапазоне изменения давлений всасывания и нагнетания;
часто хладагенты растворяют масла и условия смазки компрессора ухудшаются;
всасываемый пар имеет низкую температуру и часто несет капли жидкости;
может наблюдаться конденсация хладагента в цилиндре (при интенсивном охлаждении);
часто хладагенты очень текучи и обладают высокой проницаемостью;
к холодильным компрессорам предъявляются повышенные требования: большая надежность, значительный моторесурс, высокий КПД и т.д.
В холодильной технике используются компрессоры нескольких типов объемного типа (поршневые, винтовые, спиральные) и кинетического действия (турбокомпрессоры, эжекторы).
Поршневые компрессоры
Поршневые компрессоры для холодильных машин, работающие на хладонах и аммиаке, с электрической мощностью больше 5 кВт, выпускаются в соответствии с ГОСТ 6492-84. Этим ГОСТом предусмотрены ограничения на степень повышения давления (Рк/Р0
При использовании нашего сайта Вы принимаете правила передачи и обработки персональных данных.
Устройство холодильного оборудования
Сведения об основных принципах устройства холодильного оборудования помогут Вам использовать его возможности наиболее полно, при этом сохранив его работоспособность на долгое время.
Устройство наибольшего количества холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются — компрессор, испаритель, конденсатор и регулятор потока (терморегулирующий вентиль или капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) и высокое давление, порядка 20-23 атм.
Охлаждение в холодильной машине обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре. Парообразный хладагент всасывается компрессором, и подается в конденсатор, давление хладагента повышается до 15-20 атм., а его температура повышается до 70-90?С.
Проходя через конденсатор, горячий парообразный хладагент охлаждается и конденсируется, т. е. переходит в жидкую фазу. Конденсатор может быть либо воздушным, либо с водяным охлаждением — в зависимости от типа холодильной системы.
На выходе из конденсатора хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно 4-7?С. При этом температура конденсации примерно на 10-20?С выше температуры атмосферного воздуха.
Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается — часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости. Жидкость кипит в испарителе, забирая тепло у окружающего воздуха, и вновь переходит в парообразное состояние.
Размеры испарителя выбираются таким образом, чтобы жидкость в нем полностью улетучилась. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения — происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента, и в компрессор не попадает жидкость.
Следует отметить, что в случае попадания жидкого хладагента в компрессор — так называемого гидравлического удара — возможны повреждения и поломки клапанов и других деталей компрессора. Для конденсаторов с воздушным охлаждением величина перегрева составляет 5-8?С. Перегретый пар выходит из испарителя, и цикл возобновляется.
Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот. Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.
Опишем устройство отдельных агрегатов, узлов и деталей холодильного оборудования:
АГРЕГАТ
Холодильный агрегат состоит из следующих основных деталей и узлов: компрессора, ресивера, конденсатора, испарителя, терморегулирующего вентиля (ТРВ), осушительного патрона.
Холодильные агрегаты выпускаются на базе герметичных, экранированных, полугерметичных и сальниковых компрессоров. По своему конструктивному исполнению компрессоры, используемые в холодильных агрегатах, делятся на две основные категории: поршневые и ротационные, спиральные, винтовые.
Принципиальное отличие ротационных, спиральных и винтовых компрессоров от поршневых заключается в том, что всасывание и сжатие хладагента осуществляется не за счет возвратно-поступательного движения поршней в цилиндрах, а за счет вращательного движения пластин, спиралей и винтов.
В герметичных компрессорах электродвигатель и компрессор расположены в едином герметичном корпусе. Такие компрессоры широко используются в холодильных машинах малой и средней мощностей и в бытовых кондиционерах. Преимуществом герметичных агрегатов является их относительно невысокая стоимость и меньший уровень шума. Недостатком является невозможность ремонта компрессора даже при незначительных повреждениях, например, при выходе из строя клапана.
В экранированных компрессорах статор электродвигателя вынесен из фреономасляной среды. Агрегаты данного типа менее чувствительны к наличию влаги в холодильном контуре и, что немаловажно, позволяют все работы по монтажу и замене статора электродвигателя компрессора при его сгорании производить на месте эксплуатации, не нарушая герметичности всей системы.
В полугерметичных компрессорах электродвигатель и компрессор расположены в едином разборном корпусе. Эти компрессоры производятся различной мощности, что позволяет использовать их в агрегатах средней и большой мощности. Преимуществом является возможность ремонта и надежность в работе, недостатком — высокая по сравнению с герметичными компрессорами цена, повышенная шумность и необходимость технического обслуживания.
В сальниковых компрессорах электродвигатель расположен снаружи. Вал компрессора через сальники выведен за пределы корпуса и приводятся в движение электродвигателем с помощью ременной передачи. Такая конструкция способствует повышенной утечке хладагента через сальниковые уплотнения и требует регулярного технического обслуживания.
В настоящее время агрегаты на базе сальниковых компрессоров для торгового оборудования практически не выпускаются. Преимуществ в конструкциях с сальниковыми компрессорами на данный момент нет, ремонт подобных холодильных машин отличается невысокой надежностью.
Конденсатор
Конденсатор представляет собой теплообменный аппарат, который передает тепловую энергию хладагента окружающей среде. В холодильных агрегатах для торгового оборудования чаще всего применяют конденсаторы воздушного охлаждения. По сравнению с конденсаторами водяного охлаждения, они экономичнее в работе и проще в эксплуатации.
Конденсатор может быть смонтирован на раме агрегата или быть установленным отдельно от него. Преимущество выносного конденсатора заключается в том, что он менее требователен к температуре воздуха в машинном отделении и практически не требует дополнительной вентиляции в машинном отделении.
Как правило, воздушный конденсатор для холодильных или морозильных камер устанавливается на открытом воздухе. Но, несмотря на преимущество выносного конденсатора, при работе холодильной установки в зимний период есть определенные проблемы:
возможность повреждения компрессора при пуске;
опасность попадания жидкого хладагента в компрессор;
обмерзание теплообменника при длительной работе;
уменьшение холодопроизводительности.
Для устранения этих причин используется дополнительный комплект автоматики: реле давления или регулятор скорости вращения электродвигателя, дифференциальный клапан, обратный клапан и регулятор давления конденсации.
Ресивер
Ресивер – резервуар, служащий для сбора жидкого хладагента с целью обеспечения его равномерного поступления к терморегулирующему вентилю и в испаритель. В малых хладоновых машинах ресивер предназначен для сбора хладагента во время ремонта машины, а также для охлаждения газа и отделения капель масла и влаги.
Испаритель— это аппарат, в котором жидкий хладагент кипит при низком давлении, отводя тепло от охлаждаемых объектов (продуктов). Чем ниже давление, поддерживаемое в испарителе, тем ниже температура кипящего хладагента. Температуру кипения, как правило, поддерживают на 10—15°С ниже температуры воздуха в камере. Температура воздуха в камере зависит от вида охлаждаемого продукта. Испаритель может быть расположен непосредственно в охлаждаемом объеме (камере, шкафе) или находиться за его пределами.
В соответствии с этим по назначению различают испарители для непосредственного охлаждения среды и испарители для охлаждения промежуточного хладоносителя (вода, рассол, воздух, и др.). Конструкция испарителя зависит от вида охлаждающей среды, необходимой холодопроизводительности, свойств самого хладагента. Как правило, это пластинчатые теплообменники с медными или алюминиевыми трубками и ребрами из алюминия, меди или оцинкованной стали.
Терморегулирующий вентиль
Терморегулирующий вентиль (ТРВ)устанавливается в магистраль нагнетания перед испарителем и обеспечивает заполнение испарителя жидким хладагентом в оптимальных пределах. Избыток хладагента в испарителе может привести попаданию в компрессор жидкой фазы хладагента, что приведёт к поломке компрессора. Недостаток хладагента в испарителе резко снижает эффективность работы испарителя.
Осушительный патрон
Осушительные патроны предназначены для очистки циркулирующего по системе холодильного агрегата хладагента от механических частиц и влаги. Часто осушительные патроны используют для понижения кислотности среды внутри системы холодильного агрегата. Осушительные патроны могут устанавливаться как на магистрали нагнетания, так и на стороне всасывания.
ВОЗДУХООХЛАДИТЕЛЬ
Воздухоохладитель — аппарат для охлаждения воздуха внутри охлаждаемого объема. Состоит из испарителя и вентилятора (вентиляторов). Вентилятор прогоняет охлаждаемый воздух через испаритель и направляет на охлаждаемые продукты.
МОНОБЛОК
Машина холодильная моноблочная (моноблок) предназначена для создания искусственного холода в торговом холодильном оборудовании. Особенностью моноблока является то, что он не требует монтажа отдельных узлов на месте эксплуатации, а просто монтируется на холодильной камере. В отличие от сплит-систем, моноблок обладает меньшей стоимостью при одинаковых параметрах.
ТЕРМОСТАТ
Это устройство для отключения и включения компрессора, с целью поддержания определенной температуры в охлаждаемом объеме. Электронные термостаты основаны на принципе термопары, где электронное устройство — в зависимости от сопротивления температурного датчика — управляет временем работы компрессора.
Электромеханические термостаты работают на принципе расширения сильфонной гармошки, заполненной хладагентом. При охлаждении давление внутри сильфона понижается, сильфонная гармошка сжимается и контакты, через которые питается компрессор, размыкаются. При нагревании все происходит в обратной последовательности.
ХЛАДАГЕНТЫ
Хладагенты — это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур.
Хладон-12 (R-12) имеет химическую формулу CHF2C12 (дифтордихлорметан). Он представляет собой газообразное бесцветное вещество со слабым специфическим запахом, который начинает ощущаться при объемном содержании его паров в воздухе свыше 20%. Хладон-12 обладает хорошими термодинамическими свойствами
Хладон-22 (R-22) , или дифтормонохлорметан (CHF2C1), так же как и хладон-12, обладает хорошими термодинамическими и эксплуатационными свойствами. Отличается он более низкой температурой кипения и более высокой теплотой парообразования. Объемная холодопроизводительность Хладона-22 примерно в 1,6 раза больше, чем Хладона-12.