Коллекторный двигатель постоянного тока как изменить направление вращения

Содержание
  1. Как осуществить реверс электродвигателя постоянного и переменного тока
  2. Реверсивное включение двигателей постоянного тока
  3. Изменение направления вращения ротора асинхронного двигателя
  4. Схема подключения коллекторного двигателя с реверсом
  5. Схема реверса электродвигателя на ардуино
  6. Как поменять вращение на коллекторном двигателе
  7. Принцип работ и конструктивные особенности
  8. Из чего состоит конструкция?
  9. Схема подключения (упрощенная)
  10. Управление двигателем
  11. Преимущества машин и недостатки
  12. Основные неисправности
  13. Подключение однофазного коллекторного двигателя — переменного тока
  14. Управление коллекторным двигателем — без реостата
  15. Подключение коллекторного двигателя — через реостат
  16. Однофазные асинхронные электродвигатели
  17. Устройство и принцип действия
  18. Схема запуска и подключения
  19. Коллекторный двигатель переменного тока

Как осуществить реверс электродвигателя постоянного и переменного тока

Реверсивное включение двигателей постоянного тока

Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.

Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.

Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.

Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.

На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.

КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.

Изменение направления вращения ротора асинхронного двигателя

Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.

Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».

При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.

После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.

Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.

Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.

Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.

В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: https://samelectrik.ru/chto-takoe-zvezda-i-treugolnik-v-elektrodvigatele.html.

Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.

При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.

Схема подключения коллекторного двигателя с реверсом

Чтобы осуществить реверс коллекторного двигателя, необходимо знать:

  1. Не на каждом коллекторном моторе можно осуществить реверс. Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
  2. Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
  3. У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.

На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.

Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.

Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.

Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.

Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.

Зависит от типа двигателя:

  • Два идут на щетки коллектора.
  • От таходатчика на колодку приходит пара проводов.
  • Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.

Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.

Схема реверса электродвигателя на ардуино

В конструировании моделей или робототехнике часто применяются небольшие щеточные электродвигатели постоянного тока, для управления которыми используется программируемый микроконтроллер ардуино.

Если вращение двигателя предполагается только в одну сторону, и мощность электродвигателя небольшая, а напряжение питания от 3,3 до 5 вольт, то схему можно упростить и запитать непосредственно от ардуино, но так делают редко.

В моделях с дистанционным управлением, где необходимо использовать реверс моторов с напряжением более 5В, применяют ключи, собранные по мостовой схеме. В этом случае схема подключения двигателя с реверсом на ардуино будет выглядеть подобно тому что изображено ниже. Такое включение применяется чаще всего.

Читайте также:  Mitsubishi pajero с дизельными двигателями руководство

В мостовой схеме могут применяться полевые транзисторы или специальное согласующее устройство — драйвер, с помощью которого подключаются мощные моторчики.

В заключение отметим, что собирать схему реверса электродвигателя должен подготовленный специалист. Однако, при самостоятельном подключении необходимо соблюдать условия техники безопасности, выбрать подходящую схему соединения и подобрать необходимые комплектующие, строго следуя инструкции по монтажу. В этом случае у конструктора не возникнет трудностей в подключении и эксплуатации электродвигателя.

Теперь вы знаете, что такое реверс электродвигателя и какие схемы подключения для этого используют. Надеемся, предоставленная информация была для вас полезной и интересной!

Как поменять вращение на коллекторном двигателе

В бытовой технике, ручном электроинструменте, автомобильном электрооборудовании и системах автоматики очень часто применяется коллекторный электродвигатель переменного тока, схема подключения которого, как и устройство схожи с двигателями постоянного возбуждения постоянного тока.

Столь распространенное применение их объясняется компактностью, небольшим весом, невысокой стоимостью и простотой управления. В этом сегменте наиболее востребованы двигатели с высокой частотой и малой мощностью.

Принцип работ и конструктивные особенности

Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.

Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.

Чтобы двигатель мог работать от обычной сети, т.е. 220 в, обмотки возбуждения соединяются последовательно.

Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.

Видео: Универсальный коллекторный двигатель

Из чего состоит конструкция?

Устройство электродвигателя переменного тока включает помимо ротора и статора:

  • тахогенератор;
  • щеточно-коллекторный механизм.

Ток якоря взаимодействует с магнитным потоком обмотки возбуждения, вызывая в коллекторном механизме вращение ротора. Ток подается через щетки на коллектор, являющийся узлом ротора и соединенным с обмоткой статора последовательно. Он собран из пластин, имеющих в сечении форму трапеции.

Продемонстрировать принцип работы такого двигателя можно с помощью хорошо известного со школьной программы опыта с вращающейся рамкой, которую поместили между разноименными полюсами магнитного поля. Она вращается под воздействием динамических сил, когда по ней протекает ток. При изменении направления тока, рамка не меняет направления вращения.

Примести к выходу из строя механизма могут высокие обороты холостого хода, вызванные максимальным моментом при последовательном подсоединении обмоток возбуждения.

Схема подключения (упрощенная)

Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.

Реверса мотора подобный способ подключения не предусматривает, поскольку подсоединение обмоток параллельное приводит к одновременной смене полюсов магнитных полей. В итоге, направление момента всегда одинаково.

Рекомендуем:

Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.

Видео: Подключение и регулировка оборотов двигателя от стиральной машины

Управление двигателем

На практике применяют различные способы регулирования работы двигателя. Это может быть электронная схема, где регулирующим элементом выступает симистор, который на мотор «пропускает» заданное напряжение. Работает он как мгновенно срабатывающий ключ, открываясь, когда на его затвор поступает управляющий импульс.

В основе принципа действия, реализованного в схемах с симистором, лежит двухполупериодное фазовое регулирование, где к импульсам, которые поступают на электрод, привязано напряжение, подаваемое на двигатель. При этом, частота, с которой вращается якорь, прямо пропорциональна напряжению, подаваемому на обмотки.

Упрощенно этот принцип можно описать такими пунктами:

  • на затвор симистора подается сигнал от электронной схемы;
  • затвор открывается, ток течет по обмоткам статора, вызывая вращение якоря мотора М;
  • мгновенные величины частоты вращения преобразуются тахогенератором в электрические сигналы, формируя с импульсами управления обратную связь;
  • как следствие, вращение ротора при любых нагрузках, остается равномерным;
  • с помощью реле R и R1 осуществляется реверс мотора.

Другая схема – тиристорана фазоимпульсная.

Преимущества машин и недостатки

К достоинствам относят:

  • небольшие размеры;
  • универсальность, т.е. работу на напряжении постоянном и переменном;
  • большой пусковой момент;
  • независимость от сетевой частоты;
  • быстроту;
  • мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.

Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:

  • уменьшение срока службы механизма;
  • возникновение между щетками и коллектором искры;
  • высокий уровень шума;
  • большое число коллекторных элементов.

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.

Видео: Коллекторный электрический двигатель

Мы вновь возвращаемся в мир занимательного — как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.

Подключение однофазного коллекторного двигателя — переменного тока

В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта. Электрическая схема рис.1 дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя.

Кто разбирал из нас бытовые потребители электроэнергии как:

и далее, со мной согласятся, что для электрической схемы рис.1 недостает еще одного элемента — конденсатора. Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель . Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора. Соответственно мы пришли к выводу, что конденсатор непосредственно должен состоять в последовательном соединении с пусковой обмоткой. Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками статора, где сопротивление на каждой обмотке будет принимать свое значение рис.2.

Читайте также:  Электрическая схема лодочные моторы меркурий

В зависимости от типов асинхронных двигателей и их применения рис.3, существуют следующие схемы подключения к однофазной сети:

а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;

б) емкостной сдвиг фаз с пусковым конденсатором;

в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;

г) емкостной сдвиг фаз с рабочим конденсатором.

В схемах указаны следующие обозначения:

Перед подключением коллекторного однофазного двигателя, необходимо определить:

обмотки статора. Конденсатор, с его номинальными значениями по емкости и напряжению, и соответствующими данными для определенного типа двигателя, следует подключать к пусковой обмотке статора — последовательно. Сопротивление обмоток статора принимает следующие средние значения:

  • рабочая обмотка 10-13 Ом;
  • пусковая обмотка 30-35 Ом;
  • общее сопротивление обмоток 40-45 Ом,

— для некоторых видов бытовой техники. Выполняя замеры сопротивлений на выводах проводов обмоток статора можно определить пусковую обмотку с ее средним значением. То-есть, сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.

Управление коллекторным двигателем — без реостата

Для управления коллекторным двигателем — без реостата, вполне подойдет пакетный переключатель, с помощью которого осуществляется переключение контактной группы — в переключателе рис.4.

В этом примере, в зависимости от переключения позиции, будет изменяться направление вращения ротора электродвигателя, работа осуществляется с постоянной скоростью и оборотами двигателя, изменяется только полярность обмоток статора.

переключатель кулачковый пакетный

Для управления скоростью вращения ротора электродвигателя, можно воспользоваться симисторным регулятором скорости вращения. Данное электроустановочное изделие как и все остальные, подбирается с учетом номинальных значений по силе тока и напряжению, — учитывается подключаемая нагрузка мощность потребителя электрической энергии.

Мощность потребителя, как наглядно видно из формулы рис.5, это произведение силы тока и напряжения. Для чего вообще необходимо проводить преварительные вычисления? Нагрузка, как известно нам, подключается через автомат защитного отключения. Чтобы установить и подключить автомат защитного отключения, принимается во внимание расчет по силе тока нагрузки рис.6.

симисторный регулятор скорости вращения электродвигателя

В кратце, чтобы представить — что из себя представляет симисторный регулятор, опять-же нужно вспомнить основы электроники . Симистор, состоящий в схеме управления, выполняет функцию регулирующего элемента — для питания электродвигателя рис.7.

На рисунке показаны выводы симистра:

При поступлении импульса на вход G — симистор открывается рис.8, то-есть, выполняет роль электронного ключа — для питания электродвигателя.

На фотоснимке показано изображение электронного модуля управления. Электронный модуль управления встречается в стиральных машинах-автомат, работающих в заданом, автоматическом режиме.

электронный модуль управления стиральной машины индезит

Подключение коллекторного двигателя — через реостат

В этом схематическом изображении рис.9 показано подключение нагрузки к выводным клеммам генератора через реостат. Нагрузкой здесь является электрическая лампа накаливания. Реостат в электрической схеме состоит в последовательном соединении, нагрузка лампочка соединена в схеме параллельно. Таким-же образом, вместо данной нагрузки можно подключить коллекторный двигатель , работающий от источников электрической энергии, таких как:

либо от внешнего источника энергии, то-есть, от электрической сети. При подключении коллекторного двигателя нужно принимать во внимание электрическую схему обмоток статора, тип двигателя, как допустим для следующей схемы рис.10.

Электрическая схема представляет из себя схему универсального коллекторного двигателя , где двигатель может работать как от переменного так и от постоянного тока.

В свое время мною было изготовлено определенное количество электрических наждаков, электрические двигатели монтировались на платформу с последующим подключением, на вал ротора закреплялась насадка для установки наждачного круга, поэтому, в своей практике приходилось подключать различные типы электродвигателей.

Приведенный пример по электрическим наждакам, — тема довольно-таки тоже занимательная и полезная для наших бытовых нужд.

Остается пожелать Вам успешного проведения ремонта для различных видов бытовой техники.

Статью писал технически не граматный дебил, схема бесколекторного двигателя а описание колекторного и наоборот.

Здравствуйте электрик. Какие схемы Вы подразумеваете с названиями: «безколлекторный и коллекторный двигатели»? По схемам дается пояснение подключения обмоток коллекторного двигателя. Представляться нужно не электриком, а указывать свое имя. У меня, к примеру, имеется имя, отчество и фамилия — Виктор Георгиевич Повага. Проживаю в Сибири, работаю по договору с Яндекс.Директ.
В следующий раз, если от Вас поступит подобное письмецо, я обращусь в интернет-компании для Вашего розыска и затем, — перед судом будете доказывать «кто я такой».
Всего Вам доброго «электрик».

Виктор Георгиевич ! Большое спасибо за полезную статью.

Здравствуйте. Я электрике ничего не понимаю, но мне нужно подключить электромотор постоянного тока ИП-22, в обычную сеть

Здравствуйте. В своей практике я не встречал такой тип электродвигателя ИП-22. Не пойму Вас о чем здесь идет речь — о пожарном извещателе ИП-22 или о электродвигателе? Укажите техническую характеристику на ваш электродвигатель и страну-производитель, чтобы я смог сориентироваться по вашему вопросу.

Добрый день, Виктор! Подскажите будет ли регулировать скорость вращения коллекторного двигателя УЛ-062-УХЛ4 симисторный преобразователь без снижения момента на валу? С этим вопросом справляются частотные преобразователи, но применение их для управления данной моделью двигателя не допустимы.

Приветствую Валентин. Скоростью вращения универсального коллекторного двигателя можно управлять симисторным регулятором мощности. Симисторный преобразователь можно понимать как симисторный стабилизатор напряжения.

Боюсь обидеть автора, но по моему, действительно с названиями типов двигателя путаница. Коллекторный и однофазный асинхронный — два разных типа двигателей. Конденсатор в коллекторном двигателе если и присутствует, то как не обязательный, в принципе, элемент. Чаще всего, иногда в сочетании с дросселями, для защиты сети от создаваемых двигателем помех (фильтр). Сам двигатель без конденсатора будет работать, можно лишь поспорить об эффекте искрогашения. Поэтому называть коллекторный двигатель конденсаторным — вводить в заблуждение. В асинхронном однофазном двигателе конденсатор служит для сдвига ФАЗЫ в пусковой обмотке. Без него — сдвига фазы, ротор действительно не начнет вращаться. После раскрутки до оборотов, близких к номинальным, двигатель будет работать и без пусковой обмотки, но с существенно меньшим вращающим моментом. Сдвига фазы можно достичь и другими путями — с помощью индуктивности или активной нагрузки. Вот тогда он и не будет асинхронным двигателем с КОНДЕНСАТОРНЫМ пуском (в этом конкретно случае).

Боюсь обидеть автора, но с названиями электродвигателей в самом деле путаница. В коллекторном электродвигателе конденсатор не является необходимым элементом. В цепи питания коллекторного электродвигателя может стоять конденсатор, часто в сочетании с индуктивностями, но это для защиты сети от помех, создаваемых коллектором двигателя (фильтр). Для работы двигателя он не обязателен. Можно поспорить только по поводу необходимости его для искрогашения. Поэтому называть коллекторный электродвигатель конденсаторным – не правильно. В асинхронном «однофазном» двигателе конденсатор в цепи пусковой обмотки служит для сдвига фазы в ней. И тоже это только вариант, правда, наиболее распространенный. Сдвига фазы можно достичь включением в цепь пусковой обмотки индуктивности или активного сопротивления. Так что уместнее говорить о конденсаторном пуске асинхронного электродвигателя в однофазной сети. Двигатель при этом правильнее назвать двухфазным. Одна фаза из сети, вторая искусственно сдвинутая. После пуска при достижении двигателем оборотов, близких к номинальным, пусковую обмотку можно отключить, двигатель будет работать, однако вращающий момент его будет существенно меньше.

Читайте также:  Подбор антифриза по марке машины

Здравствуйте. Здесь я в общем-то поторопился высказать свое мнение, назвав коллекторный двигатель конденсаторным. Приятно было пообщаться с вами. С прошедшими праздниками вас.

Подскажите как подключить двигатель ул-062 к сети 220

Здравствуйте. Я не нашел схему на данный электродвигатель. Если верить той информации, которую мне удалось найти в интернете, то подключение двигателя (УЛ-062) выглядит следующим образом: к выводам контактов (на клеммной колодке) О1Я2 и С1Ш2 подключается переменное напряжение 220 Вольт, на другие два вывода контактов устанавливается перемычка (отрезок провода). Перед подключением, рекомендую проверить работу электродвигателя малым напряжением.

На клемной колодке 6 выводов, бывает и 8. Что куда подсоединять

Однофазные электродвигатели 220В широко используются в разнообразных бытовых и промышленных устройствах: холодильниках, стиральных машинах, насосах, дрелях, заточных и подобных им обрабатывающих станках. Их технические характеристики несколько уступают свойствам трехфазных двигателей. Существует два наиболее распространенных типа однофазных электродвигателей для сети переменного тока промышленной частоты:

Первые более просты по своему устройству, но обладают рядом недостатков, главные из которых – трудности с изменением направления и частоты вращения ротора.

Далее рассмотрены однофазные асинхронные электродвигатели и коллекторные двигатели переменного тока.

Однофазные асинхронные электродвигатели

Устройство и принцип действия

Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор – это обычно короткозамкнутая обмотка («беличья клетка») – медные или алюминиевые стержни, замкнутые с торцов.

Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) – оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.

Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.

По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.

Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие – сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.

Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов – 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.

При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие – возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.

Схема запуска и подключения

Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.

Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.

Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:

  • с пусковым конденсатором (рис. а);
  • с пусковым и рабочим (рис. б);
  • только с рабочим конденсатором (рис. в).

Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются. Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки. Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).

Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового – в 2,5 раза больше.

Коллекторный двигатель переменного тока

Рассмотрим коллекторный двигатель переменного тока. Универсальные коллекторные электродвигатели могут питаться от источников как переменного, так и постоянного тока. Они часто используются в электроинструментах, швейных и стиральных машинах, мясорубках – там, где нужен реверс, регулировка частоты вращения ротора или его вращение с частотой более 3000 об/мин.

Обмотки статора и ротора коллекторного электродвигателя соединяются последовательно. К обмоткам ротора ток подводится через щетки, соприкасающиеся с пластинами коллектора, к которым подсоединяются концы обмоток ротора.

Реверс однофазного двигателя с коллектором осуществляется за счет изменения полярности включения в сеть обмоток статора или ротора, а скорость вращения можно регулировать, изменяя величину тока в обмотках.

Основные недостатки такого двигателя:

  • высокая стоимость;
  • сложность устройства, практическая невозможность самостоятельно осуществить его ремонт;
  • значительный уровень шума, трудное управление, создание радиопомех.

Остается добавить, что при использовании устройств, содержащих однофазный электродвигатель, следует самое пристальное внимание уделить выбору его типа, схеме подключения, тому, как правильно осуществить расчет элементов.

Оцените статью