Кинематическая схема компрессионной холодильной машины

Схема и принцип работы компрессионной холодильной машины

Парокомпрессионные холодильные машины являются наиболее распространёнными и универсальными устройствами. Если рассматривать холодильную технику, задействованную в сфере сервиса, то парокомпрессионная холодильная машина является главной частью любой установки и называется компрессионным холодильным агрегатом.

Холодильный агрегат компрессионного типа предназначен для осуществления главного процесса — охлаждения продуктов, жидкостей или воздуха, т.е. отбора их тепла и передачи его в окружающую среду. Иначе говоря, он предназначен для производства холода.

Компрессионный холодильный агрегат — это замкнутая герметичная система, внутри которой принудительно циркулирует хладагент, рабочее тело холодильной машины.

В качестве хладагента в современных холодильных установках используют газы, не разрушающие озоновый слой, и являющиеся различными производными углеводородов, как правило, это фреоны. Фреоны — это в нормальных условиях газы, жидкости, которых кипят при температурах: —29——50 °С. Основное назначение хладагента — перенос тепла продуктов во внешнюю среду. При работе агрегата компрессионного типа, вследствие совершения механической работы сжатия, происходит изменение агрегатного состояния хладагента из газа в жидкость, которая, испаряясь, отнимает теплоту продуктов, жидкостей или воздуха, а затем, на этапе конденсации (превращения газа в жидкость), отдает его в окружающую среду.

Рис. 2.1. Схема типового компрессионного холодильного агрегата : 1 — компрессор (осуществляет сжатие хладагента); 2- конденсатор (теплообменный аппарат, в котором происходит конденсация хладагента); 3 — фильтр осушитель; 4- капиллярная трубка (является дросселирующим элементом холодильного аппарата); 5 — испаритель (теплообменный аппарат, в котором происходит испарение хладагента); 6 — охлаждаемые продукты или среды; 7 — всасывающая трубка.

Поясним, принцип работы холодильного агрегата на примере холодильника для охлаждения продуктов. При включении холодильного агрегата начинает работать мотор-компрессор 1, который представляет собой поршневой насос, приводимый в движение электромотором. Хладагент сжимается поршнем компрессора до давления 8-10 атм. около 50 раз в секунду. Вследствие сжатия, температура хладагента повышается до уровня на 15-20 °С выше, чем температура окружающей среды. Из-за малой продолжительности сжатия хладагента, он не успевает отдать это тепло в окружающую среду, т.е. реализуется ^адиабатное сжатие (процесс, происходящий без изменения внутренней энергии, теплообмена). Затем сжатый до давления 8-10 атм. и «горячий» (на 15-20 °С выше температуры окружающей среды) хладагент попадает в конденсатор 2 —теплообменный аппарат, выполненный в виде трубчатого оребрённого змеевика (рёбра необходимы для увеличения площади теплообмена, т.е. повышения его эффективности при минимальных размерах). В теплообменном аппарате происходит охлаждение горячего хладагента, окружающим змеевик воздухом. Из-за чего и происходит конденсация, т.е. превращение хладагента в жидкость (давление в конденсаторе 8-10 атм. на входе и несколько ниже на выходе из него входе , температура на входе на 15-20 °С выше температуры окружающей среды, а на выходе близка к ней).

Из конденсатора жидкий хладагент, с температурой окружающей среды, попадает в фильтр-осушитель 3. В фильтре-осушителе, заполненном металлическими сетками с гранулами селикагеля, происходит задержание механических примесей и воды, содержащихся в хладагенте. Механические примеси образуются вследствие работы компрессора, а вода из-за химических реакций между хладагентом, маслом и присадками, необходимыми для предотвращения коррозии элементов агрегата.

Из фильтра-осушителя жидкий хладагент попадает в дросселирующий элемент агрегата — капиллярную трубку 4 (дросселирование — процесс понижения давления жидкости или газа вследствие сужения внутреннего диаметра трубопровода и трения о его внутренние стенки). Капиллярная трубка имеет проходной диаметр 0,8 — 1 мм и длину 5 — 6 м, диаметр капиллярной трубки много меньше, чем диаметр фильтра-осушителя. В ней происходит падение давления жидкого хладагента с 8-10 атм. до 1 атм. за счет трения жидкости о стенки капиллярной трубки. Однако вследствие трения происходит выделение тепла, что приводит к частичному закипанию жидкости (образование пузырьков). Для уменьшения такого нагревания хладагента капиллярная трубка «наматывается» на холодную всасывающую трубку.

Затем жидкий закипающий хладагент попадает в испаритель 5, представляющий собой листотрубный теплообменный аппарат, внутри которого находятся продукты. Вследствие испарения, а диаметр трубки испарителя 8-10 мм, происходит отбор тепла от продуктов, а температура опускается до температуры, близкой к температуре кипения (у современных холодильников -18^ -24 °С и даже ниже) при этом давление хладагента остаётся неизменным , т.е. около 1 атм. Эта температура несколько ниже, чем температура кипения из-за частичного закипания хладагента в капиллярной трубке и других потерь.

Холодные пары хладагента по всасывающей трубке 7 попадают в компрессор, и цикл продолжается пока он работает. Температура на входе всасывающей трубки -18 + -24 «С, а на выходе +15 + +20°С.

Таким образом, пока работает компрессор, продукты охлаждаются. Экономия электроэнергии достигается отключением компрессора, что приводит к медленному повышению температуры продуктов. Как только эта температура повышается до установленного терморегулятором предела, компрессор вновь включается и температура понижается, т.е. автоматически организуется экономичная прерывистая работа компрессора.

простота конструкции; — наличие трущихся частей в -технологичность изготовления и компрессоре;

ремонта; — шум при работе, который

— экономичность при работе; возрастает при длительной

— простота эксплуатации; эксплуатации.

В зависимости от вида холодильного компрессора парокомпрессионные машины подразделяются на поршневые, турбокомпрессорные, ротационные и винтовые. Для повышения экономической эффективности холодильной машины (снижения затрат энергии на единицу отнятого от охлаждаемого тела количества теплоты) иногда перегревают пар. всасываемый компрессором, и переохлаждают жидкость перед дросселированием. По этой же причине для получения температур ниже -30 °С используют многоступенчатые или каскадные холодильные машины. В многоступенчатых холодильных машин сжатие пара производится последовательно в несколько ступеней с охлаждением его между отдельными ступенями. При этом в двухступенчатых холодильных машинах получают температуру кипения хладагента до -80 °С (см. рис.2.2). В каскадных холодильных машинах, представляющих собой несколько последовательно включенных холодильных машин, которые работают на различных, наиболее подходящих по своим термодинамическим свойствам для заданных температурных условий хладагентах, получают и более низкую температуру кипения.

Читайте также:  Лучшие масла для двигателя 5w30 рейтинг 2020

Рис. 2.2. Двухкаскадная компрессионная холодильная машина.

Устройство и принцип работы компрессионной холодильной машины

Из всех способов наибольшее применение получило охлаждение с помощью холодильных машин (машинное охлаждение), при котором используется принцип кипящих жидких газов. Работа холодильной машины полностью автоматизирована, что обеспечивает удобство в эксплуатации, безопасность работы обслуживающего персонала, возможность соблюдения требуемого температурного режима для различных видов продуктов, а также режима экономии.

Холодильная машина — «это кольцевая герметически замкнутая система, по которой циркулирует одно и то же количество рабочего вещества, называемого холодильным агентом.

В торговом машиностроении применяются холодильные машины двух видов: компрессионная и абсорбционная, в которых используются различные способы обеспечения циркуляции хладагента. В компрессионной холодильной машине для циркуляции хладагента затрачивается механическая энергия, а в абсорбционной — тепловая. Наибольшее распространение получила компрессионная холодильная машина» [10], в которой основным рабочим узлом является компрессор .

Схема компрессионной холодильной машины: 1 — компрессор; 2 — всасывающий клапан; 3 — нагнетающий воздух клапан;

4 — поршень; 5 — цилиндр; б — электропривод; 7 — электровентилятор;

8 — конденсатор; 9 — ресивер; 10- терморегулирующий вентиль; 11 — датчик;

Схема компрессионной холодильной машины: 1 — компрессор; 2 — всасывающий клапан; 3 — нагнетающий воздух клапан;

4 — поршень; 5 — цилиндр; б — электропривод; 7 — электровентилятор;

8 — конденсатор; 9 — ресивер; 10- терморегулирующий вентиль; 11 — датчик;

Компрессионная холодильная машина состоит из компрессора 1, конденсатора 8, ресивера 9, терморегулирующего вентиля 10 и испарителя 12. Эти части соединены между собой трубопроводами и образуют замкнутую герметичную систему, которая заполнена холодильным агентом — хладоном.

Компрессор служит для непрерывного отсасывания холодных паров хладона из испарителя, сжатия их и нагнетания в конденсатор. Важнейшими частями компрессора являются цилиндр 5, поршень 4 и два клапана (всасывающий 2 и нагнетающий 3). Поршень совершает в цилиндре возвратно-поступательное движение с помощью электропривода 6. При опускании поршня увеличивается объем рабочей полости цилиндра и давление в нем снижается. Вследствие этого открывается всасывающий клапан, и цилиндр заполняется парообразным хладоном, поступающим из испарителя. При поднятии поршня (при закрытых клапанах) пары хладона сжимаются и нагреваются за счет сжатия до температуры 50 — 60°С. При достижении наибольшего давления паров в цилиндре открывается нагнетающий клапан, и горячие пары хладона выталкиваются в конденсатор.

Конденсатор — это теплообменный аппарат, охлаждаемый с помощью электровентилятора. Конденсатор воздушного охлаждения представляет собой трубчатый змеевик из металлических труб с насаженными на них ребрами из металлических пластин. По змеевику сверху вниз проходит охлаждаемый холодильный агент, а снаружи змеевик обдувается воздухом от электровентилятора 7. В конденсаторе горячие пары хладона отдают свою теплоту воздуху помещения. В результате их температура понижается до температуры конденсации, которая обычно на 8-12°С выше температуры воздуха помещения. При дальнейшем охлаждении пары хладона отдают скрытую теплоту парообразования при постоянной температуре и превращаются в жидкость. Интенсивность конденсации зависит от размера охлаждаемой площади поверхности конденсатора, разности температур хладоново-го пара и воздуха помещения, а также чистоты поверхности конденсатора. Загрязнение конденсатора смазочными маслами, пылью затрудняет теплообмен между холодильным агентом и наружным воздухом. Жидкий хладон, постепенно проходя через фильтр-осушитель, накапливается в ресивере 9.

Ресивер представляет собой стальной герметичный сосуд, служащий для накопления, хранения сжиженного хладона и равномерной его подачи в другие части холодильной машины. В ресивере и конденсаторе поддерживается одинаковое давление, равное давлению конденсации. Из ресивера жидкий хладон подается к терморегулирующе-му вентилю 10.

Терморегулирующий вентиль (ТРВ) — автоматический прибор, который регулирует заполнение испарителя жидким хладоном. Основными его частями являются игольчатый клапан, закрывающий доступ жидкого хладона из ресивера в испаритель, и датчик 11, контролирую

щий температуру паров хладона на выходе из испарителя. При повышении температуры, что является признаком недостаточного заполнения испарителя, клапан вентиля автоматически открывается, увеличивая подачу жидкого хладона в испаритель. Другой важной функцией ТРВ является дросселирование (расширение жидкости при истечении через узкие отверстия) жидкого хладона. Дросселирование происходит в кольцевой щели между игольчатым клапаном и седлом вентиля. На этом участке резко падает давление жидкого хладона, поскольку в испарителе поддерживается более низкое давление, чем в конденсаторе и ресивере. При этом давление конденсации хладона понижается до давления кипения. Соответственно понижается температура кипения жидкого хладона.

Устройство и принцип действия компрессионной

Холодильной машины

Холодильные машины предназначены для понижения температуры окружающей среды и непрерывности поддержания заданной низкой температуры. Тепло, отнимаемое от охлаждаемого объекта, воспринимается холодильным агентом и передается им окружающей среде. Принципиальная схема машинного охлаждения представлена на рис. 4.3.

Читайте также:  Какие устройства применяются для облегчения пуска дизельных двигателей

Тепло от объекта Q0, например, от воздуха камеры хранения мороженых продуктов, при низкой температуре t0 передается рабочему веществу холодильной машины. Далее в процессе сжатия паров холодильного агента затрачивается работа L, в результате чего повышается температура рабочего вещества, и тепло, отнятое от охлаждаемого объекта, вместе с теплом, эквивалентным затраченной работе (Q0+L), передается окружающей среде, например воздуху или воде, поступающей на конденсатор, имеющей более высокую температуру t.

При этом холодильный агент (рабочее вещество), циркулирующее в холодильной машине, совершает обратный круговой процесс – холодильный цикл.

Для осуществления этого цикла затрачивается работа L. Общее количество тепла, передаваемого в окружающую среду с температурой t, в соответствии с законом сохранения энергии составляет

Равенство (1) называется уравнением энергетического (теплового) баланса паровой компрессионной холодильной машины.

Количество тепла, отводимое в единицу времени от охлаждаемого объекта, называется холодопроизводительностью установки.

Тепло, отводимое от охлаждаемого объекта одним килограммом холодильного агента, т.е. тепло q0, называется его удельной холодопроизводительностью.

Дж/кг (2)

где Q0 – холодопроизводительность установок, Вт;

G – количество хладона, циркулирующего в системе, кг/с.

Эффективность работы холодильной машини оценивается холодильным коэффициентом e, представляющим собой отношение холодопроизводительности установки Q0 к затраченной работе L.

или (3)

Наиболее экономично (e=3¸5) работают компрессионные холодильные машины при температурах кипения от -15° до +5°С. Поэтому они широко применяются для получения умеренного холода, в частности в торговом холодильном оборудовании. При снижении температуры кипения холодильный коэффициент резко уменьшается.

Компрессионная холодильная машина (рис. 4.4.) состоит из следующих основных узлов: испарителя, компрессора, конденсатора, ресивера, фильтра-осушителя, терморегулирующего вентиля. Автоматическое действие машины обеспечивается терморегулирующим вентилем и регулятором давления. К вспомогательным аппаратам, способствующим повышению экономичности и надежности работы машины, относятся: ресивер, фильтр, теплообменник, осушитель. Машина привидятся в действие электродвигателем.

Испаритель – охлаждающая батарея, которая поглощает тепло окружающей среды за счет кипящего в ней при низкой температуре хладагента. В зависимости от вида охлаждаемой среды различают испарители для охлаждения жидкости и воздуха.

Компрессор предназначен для отсасывания паров хладагента из испарителя, сжатия и нагнетания их в перегретом состоянии в конденсатор. В малых холодильных машинах применяют поршневые и ротационные компрессоры, причем наибольшее распространение получили поршневые.

Конденсатор – теплообменный аппарат, служащий для сжижения паров хладагента путем их охлаждения. По виду охлаждающей среды конденсаторы выпускают с водяным и воздушным охлаждением. Конденсаторы с принудительным движением воздуха имеют вертикально расположенные плоские змеевики из медных или стальных оребренных труб. Естественное воздушное охлаждение применяется только в холодильных машинах бытовых электрохолодильников. Конденсаторы с водяным охлаждением бывают кожухозмеевиковые и кожухотрубные.

Ресивер – резервуар, служащий для сбора жидкого хладагента с целью обеспечения его равномерного поступления к терморегулирующему вентилю и в испаритель. В малых хладоновых машинах ресивер предназначен для сбора хладагента во время ремонта машины.

Фильтр состоит из медных или латунных сеток и суконных прокладок. Он служит для очистки системы и хладагента от механических загрязнений, образовавшихся в результате недостаточной очистки их при изготовлении монтаже и ремонте. Фильтры бывают жидкостные и паровые. Жидкостный фильтр устанавливается после ресивера перед терморегулирующим вентилем, паровой – на всасывающей линии компрессора.

Для предотвращения попадания ржавчины и механических частиц в цилиндры малых фреоновых холодильных машин, во всасывающую полость компрессора вставляют фильтр в виде стаканчика из латунной сетки.

Терморегулирующий вентиль обеспечивает равномерное поступление хладона в испаритель, распыляет жидкий хладагент, тем самым понижает давление конденсации до давления испарения. При недостаточном заполнении испарителя жидкостью часть поверхности его не используется, что ведет к нарушению нормального режима работы машины и температуры испарения хладагента.

Регулятор давления состоит из прессостата (регулятора низкого давления) и маноконтроллера (выключателя высокого давления). Для регулировки температурного режима в определенных пределах необходимо, чтобы холодопроизводительность холодильной машины всегда превышала приток тепла к ней. Поэтому в нормальных условиях нет необходимости в непрерывной работе холодильной машины.

Периодическое включение холодильной машины осуществляется прессостатом автоматически. Требуемый автоматический режим достигается путем регулирования продолжительности перерывов работы холодильной машины. Маноконтроллер служит для защиты от чрезмерного повышения давления в линии нагнетания. При повышении давления в конденсаторе свыше 10 атм (норма — 6¸8 атм) он размыкает цепь катушки магнитного пускателя, питание электродвигателя отключается и холодильная машина останавливается.

Работа холодильной машины происходит следующим образом. Легкоиспаряющаяся жидкость (хладон) поступает через терморегулирующий вентиль в испаритель. Попадая в условия низкого давления, она кипит, превращаясь в пар, и при этом отбирает тепло у воздуха, окружающего испаритель. Из испарителя пары хладона отсасываются компрессором, сжижаются и в перегретом от сжатия состоянии нагнетаются в конденсатор. В охлаждаемом водой или воздухом конденсаторе они превращаются в жидкость. Жидкий хладон стекает по трубам конденсатора и скапливается в ресивере, откуда под давлением проходит через фильтр, где задерживаются механические примеси (песок, окалина и др.). Очищенный от примеси хладон, проходя через узкое отверстие терморегулирующего вентиля, дросселируется (мнется), распыляется и при резком снижении и температуры поступает в испаритель, после чего цикл повторяется.

Рабочий цикл холодильной машины с учетом взаимодействия приборов автоматики состоит в следующем. При включенном электродвигателе контакты реле давления разомкнуты, терморегулирующий вентиль не пропускает жидкий хладон из конденсатора в испаритель, так как игла до конца вошла в седловину и плотно закрыла проходное сечение. В испарителе в это время продолжается процесс кипения оставшегося после включения жидкого хладагента. От притока внешнего тепла температура испарителя постепенно повышается и, следовательно, давление скопившихся в нем паров возрастает. Давление в испарителе будет расти до тех пор, пока прессостат реле давления не замкнет контакты и машина не вступит в работу.

Читайте также:  Ремонт кожаного салона автомобиля своими руками краска

При включении машины начинается отсос перегретых паров из испарителя в компрессор. Это влечет за собой повышение температуры и давления в чувствительном патроне терморегулирующего вентиля, вследствие чего игольчатый клапан открывает проходное отверстие. Жидкий хладагент, интенсивно кипя, устремляется в трубы испарителя. Кипение сопровождается значительным понижением температуры парожидкостной смеси, в результате чего охлаждаются стенки испарителя, окружающий его воздух и скоропортящиеся продукты.

Понижение температуры окружающей среды снижает величину теплопритока. Кипение становится менее интенсивным, сокращается количество пара, падает давление в испарителе до предела, при котором реле давления размыкает контакты и машина останавливается. Через несколько секунд после остановки машины давление в термобаллоне и испарителе сравнивается и игольчатый клапан терморегулирующего вентиля закрывается.

Холодильные агенты

Хладагенты – это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур. Наиболее распространенные из них – хладон и аммиак.

При выборе хладагента руководствуются его термодинамическими, теплофизическими, физико-химическими и физиологическими свойствами. Важное значение имеет также его стоимость и доступность. Хладегенты не должны быть ядовиты, не должны вызывать удушья и раздражения слизистых оболочек глаз, носа и дыхательных путей человека.

Было установлено, что хлоросодержащие хладагенты, достигая стратосферы, разлагаются там ультрафиолетовыми лучами и высвобождают хлор, быстро реагирующий с озоном, разрушая таким образом озоновый слой.

В 1995 г. в Вене была принята Конвенция о защите озонового слоя. К ней присоединились 127 государств. В 1989 г. вступил в силу Монреальский протокол о постепенном сокращении, а затем о полном прекращении в 2030 г. выпуска озоноразрушающих хладагентов. К опасным группам были отнесены хладоны R-11, R-12, R-113, R-114, R-115, R-12 B1, R-13 B1, R-114 B2. В 90-х годах текст протокола был ужесточен путем введения ограничений не только на производство, но и на торговлю, экспорт и импорт любой холодильной техники, содержащей озоноразрушающие вещества.

В настоящий момент установлены следующие сроки запрета производства и применения озоноразрушающих хладагентов:

— R-11, R-12, R-502 – полное прекращение производства 1 января 1996 г.

— R-22 – отнесен к группе соединений, имеющих меньшую экологическую опасность. Он должен быть практически полностью исключен из рынка хладагентов в 2020 г.

Для замены R-12, R-502 и R-22 основными производителями химической продукции были разработаны и выпускаются переходные (с содержанием хлорфторуглеродов) и озонобезопасные (состоящие только из фторуглеродов) смеси хладагентов (табл. 1 и табл. 2).

Переходные (сервисные хладагенты)

Заменяемые хладагенты Классификация ASHRAE Cостав
R 12 R-401A R22/152a/124
R-401B R22/152a/124
R-406A R22/600a/142в
R-409A R22/124/142в
R-409B R22/124/142в
R 502 R-22
R-402A R22/125/290
R-402B R22/125/290
R-403A R22/218/290
R-403B R22/218/290

Свободные от хлора HFC

Заменяемые хладагенты Классификация ASHRAE Cостав
R 12 R 134 A
R-22 R 407 C R32/125/134a
R 502 R 404 A R143a/125/134a

На предприятиях торговли в настоящее время используются холодильные машины работающие на хладагентах R22, R134а и в перспективе на R717 (аммиаке).

R22 (CHF2Cl) – бесцветный газ, обладающий положительными физико-химическими, физиологическими и др. свойствами.

Коэффициент теплоотдачи R-22 на 30% выше, чем R12. При замене R12 на R22 холодопроизводительность компрессора при том же температурном режиме увеличивается на 60%, а удельный расход электроэнергии уменьшается на 6% благодаря меньшим дроссельным потерям в компрессоре. Широко применяется R22 в низкотемпературных холодильных установках и установках кондиционирования воздуха.

R134а (CF3CFH2) – нетоксичен и неогнеопасен, но при соприкосновении с пламенем и горячими поверхностями разлагается с образованием высокотоксичных продуктов. В целом R134а по энергетическим характеристикам проигрывает R-12. Ввиду значительного значения потенциала глобального потепления R134а рекомендуется применять в герметичных холодильных системах. В тоже время озоносберегающий потенциал R134а близок к 0. Применение R134а вместо R22 потребует существенных изменений в размерах оборудования (большой диаметр труб теплообменных устройств, увеличение размеров компрессора). Все это должно привести к значительному увеличению стоимости холодильного оборудования. Таким образом для производителей все более трудным становится рациональный подбор хладагента применительно к конкретному объекту. Поэтому проблема использования в качестве хладагентов природных веществ, и в первую очередь аммиака, наиболее актуальна у производителей холодильного оборудования.

R 717 (NH3 — аммиак)используется уже много лет в крупных промышленных холодильных установках. Аммиак не обладает озоноразрушающей способностью и не увеличивает парниковый эффект. Энергетическая эффективность использования R717 в холодильном оборудовании столь же высока, как и при применении R22. Кроме того R717 обладает низкой стоимостью, производство его доступно, проблемы его воспламеняемости и токсичности сегодня разрешимы, что делает его привлекательным для производителей холодильного оборудования.

| следующая лекция ==>
В предприятиях пищевой промышленности и торговли | Назначение и классификация торговых автоматов

Дата добавления: 2018-11-25 ; просмотров: 567 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Оцените статью