Кинематическая схема дифференциала автомобиля

—>Автозапчасти и СТО —>

Дифференциал.

Дифференциа́л (от лат. differentia – разность, различие) — механизм в составе трансмиссий транспортных и (реже) технологических машин по передаче мощности посредством вращения с одновременным делением единого потока мощности

Дифференциа́л — в общем случае есть механизм по передаче мощности вращением, позволяющий без каких-либо пробуксовок и потерь КПД складывать два независимых по своим угловым скоростям входящих потока мощности в один исходящий, раскладывать один входящий поток мощности на два взаимозависимых по своим угловым скоростям исходящих, а также работать в первом и втором вариантах попеременно. Основное назначение дифференциала в технике — трансмиссии транспортных машин, в которых дифференциал разветвляет поток мощности от двигателя на два между колёсами, осями, гусеницами, воздушными и водными винтами. Прочее использование дифференциалов в технике вообще и в транспортной технике в частности является вторичным и нечастым. Механической основой дифференциала по умолчанию является планетарная передача, как единственная из всех передач вращательного движения, имеющая две степени свободы.

Назначение

Применение дифференциалов в трансмиссиях автомобилей обусловлено необходимостью обеспечить вращение ведущих колёс одной оси с разной частотой. В первую очередь это необходимо в поворотах, но также и при разном диаметре ведущих колёс, что возможно при вынужденной установке шин двух разных типоразмеров или при разности давления в шинах. В случае, если оба колеса имеют жёсткую кинематическую связь, любое рассогласование частот вращения по вышеупомянутым причинам приводит к возникновению так называемой паразитной циркуляции мощности. Это безусловно вредное явление вызывает проскальзывание колеса с меньшей силой сцепления относительно поверхности дороги, дестабилизирует движение автомобиля по дуге, нагружает трансмиссию и двигатель, повышает расход топлива и проявляется тем сильнее, чем меньше радиус поворота и выше силы сцепления, действующие на колёса. Дифференциал, установленный в разрез валов привода колёс одной оси, позволяет разорвать жёсткую кинематическую связь между колёсами и устранить паразитную циркуляцию мощности, не потеряв при этом возможностей по передаче мощности на каждое колесо с КПД близким к 100%. Подобный дифференциал называется «межколёсным», а данная область применения является основной для дифференциалов вообще, так как межколёсный дифференциал присутствует в приводе ведущих колёс всех легковых, грузовых и абсолютно подавляющей части внедорожных, спортивных и гоночных автомобилей.

Помимо привода ведущих колёс автомобиля дифференциалы также применяются:

  • В приводе двух и более постоянно ведущих осей от одного двигателя (так называемый «межосевой» дифференциал).
  • В приводе соосных воздушных и водных винтов противоположного вращения (в качестве дифференциала и редуктора одновременно).
  • В дифференциальных механизмах поворота гусеничных машин (в связке из одного-двух-трёх дифференциалов с разными принципами совместной работы).
  • При сложении передаваемой вращением мощности от двух двигателей с произвольными частотами вращения на один общий вал.

При повороте автомобиля, все его колеса проходят разный по длине путь, и если между двумя ведущими колесами существует жесткая связь, они начнут проскальзывать. Скольжение колес при повороте приводит к повышенному расходу топлива, износу шин, нарушению устойчивости и т. п.

Дифференциал позволяет ведомым валам вращаться с разными угловыми скоростями и выполняет функции распределения подводимого к нему крутящего момента между колесами или ведущими мостами. Дифференциалы бывают межколесными и межосевыми (в случае установки между несколькими ведущими мостами).

Впервые дифференциал был применен в 1897г. на паровом автомобиле. В настоящее время все автомобили имеют межколесные дифференциалы на ведущих мостах. Наиболее распространенным является конический симметричный дифференциал, включающий в себя: корпус, сателлиты, ось сателлитов (или крестовину) и полуосевые шестерни. Обычно число сателлитов в дифференциалах легковых автомобилей — два, грузовых и внедорожных — четыре.

Симметричный дифференциал получил свое название за способность распределять подводимый момент поровну при любом соотношении угловых скоростей, соединенных с ним валов. Применение такого дифференциала в качестве межколесного, обеспечивает устойчивость при прямолинейном движении, а также при торможении двигателем на скользкой дороге.

Существенным недостатком обычного дифференциала является снижение проходимости автомобиля, если одно из его колес попадает в условия малого сцепления с опорной поверхностью. При этом на колесо, находящееся в нормальных сцепных условиях, нельзя подвести крутящий момент, превышающий тот, который может быть реализован на колесе, находящемся в условиях малого сцепления (это приводит к пробуксовке колеса). Для преодоления этого недостатка в некоторых конструкциях используются Дифференциалы полноприводных автомобилей различных конструкций.

Читайте также:  Диагностика с помощью мотор тестер

Самоблокирующиеся дифференциалы могут выполняться следующим образом:

1) с электронной блокировкой;

2) с дисковым дифференциалом;

3) с вязкостной муфтой.

Управление системой осуществляется как механически водителем, так и с помощью специальных блоков управления, которые учитывают угловые скорости колес и разность крутящего момента на переднем и заднем приводе. Полностью автоматические системы позволяют экономить топливо, обеспечивают улучшение проходимости автомобиля, облегчая его управление на высокой скорости и лучше реализуют мощность мотора.

Сегодня подобные системы самоблокирующихся дифференциалов зарекомендовали себя с наилучшей стороны, они отличаются прочностью, надежностью и долговечностью, не требуя в процессе эксплуатации какого-либо сложного обслуживания и ремонта.

Дифференциал Торсена

Червячный дифференциал Торсена — это конструкция, которая отличается чувствительностью к показателям крутящего момента. По сути, это планетарный редуктор, внутри которого располагаются многочисленным ведомые и ведущие червячные шестерни. Отличительной особенностью такой конструкции является свойство червяных шестерён вращать другие валы, при этом оставаясь полностью неподвижными.

Такие конструкции получились надежными, долговечными, функциональными и способными выдерживать существенные нагрузки в процессе эксплуатации автомобиля. Сегодня эти системы устанавливаются на полноприводные седаны и универсалы, лёгкие кроссоверы и тяжёлые внедорожники. Рассматривать дифференциал Торсена как полноценную блокировку дифференциала всё же не следует, однако такая система существенно улучшает управляемость, позволяя эффективно перебрасывать крутящий момент между осями и отдельными колёсами на автомобиле.

Кинематические схемы шестеренных дифференциалов. Работа дифференциала при движении автомобиля. Распределение моментов

Страницы работы

Фрагмент текста работы

Дифференциал Механизм трансмиссии, распределяющий крутящий момент двигателя между ведущими колесами и ведущими мостами автомобиля, называется дифференциалом. Дифференциал служит для обеспечения ведущим колесам разной скорости вращения при движении автомобиля по неровным дорогам и на поворотах. Разная скорость вращения ведущим колесам, проходящим разный путь на поворотах и неровных дорогах, необходима для их качения без скольжения и буксования. В противном случае повысится сопротивление движению автомобиля, увеличатся расход топлива и износ шин. В зависимости от типа и назначения автомобилей на них применяются различные типы дифференциалов (рис. ).

Дифференциал, распределяющий крутящий момент двигателя между ведущими колесами автомобиля, называется межколесным. Дифференциал, который распределяет крутящий момент двигателя между ведущими мостами автомобиля, называется межосевым. На большинстве автомобилей применяются конические дифференциалы, симметричные и малого трения.

Симметричный дифференциал распределяет поровну крутящий момент. Его передаточное число равно единице (uд=1), т. е, полуосевые шестерни 3 и 4 (рис., а, б) имеют одинаковые диаметры и равное число зубьев. Симметричные дифференциалы применяются на автомобилях обычно в качестве межколесных и реже — межосевых, когда необходимо распределять крутящий момент поровну между ведущими мостами. Симметричные дифференциалы применяются на автомобилях обычно в качестве межколесных и реже — межосевых, когда необходимо распределять крутящий момент поровну между ведущими мостами.

Кинематические схемы шестеренных дифференциалов а, б — симметричных; в, г — несимметричных; 1 — корпус; 2 — сателлит; 3, 4 – шестерни

Несимметричный дифференциал (рис. в,г) распределяет не поровну крутящий момент. Его передаточное число не равно единице, но постоянно (uд≠1=const), т.е. полуосевые шестерни 3 и 4 имеют неодинаковые диаметры и разное число зубьев. Несимметричные дифференциалы применяют, как правило, в качестве межосевых, когда необходимо распределять крутящий момент пропорционально нагрузкам, приходящимся на ведущие мосты.

Межколесный конический симметричный дифференциал (см., а) состоит из корпуса 1, сателлитов 2, полуосевых шестерен 3 и 4, которые соединены полуосями с ведущими колесами автомобиля. Дифференциал легкового автомобиля имеет два свободно вращающихся сателлита, установленных на оси, закрепленной в корпусе дифференциала, а у грузового автомобиля — четыре сателлита, размещенных на шипах крестовины, также закрепленной в корпусе дифференциала. Работу дифференциала при движении автомобиля поясняет рисунок. При прямолинейном движении автомобиля по ровной дороге (рис., а) ведущие колеса одного моста проходят одинаковые пути, встречают одинаковое сопротивление движению и вращаются с одной и той же скоростью.

При этом корпус дифференциала, сателлиты и полуосевые шестерни вращаются как одно целое. В этом случае сателлиты 3 не вращаются вокруг своих осей, заклинивают полуосевые шестерни 4 и на оба ведущих колеса передаются одинаковые крутящие моменты.

Работа дифференциала при движении автомобиля: а — по прямой; б — на повороте; 1, 4 — шестерни; 2 — корпус; 3 — сателлит; 5 – полуось

При повороте автомобиля (рис., б) внутреннее по отношению к центру поворота колесо встречает большее

Симметричные и несимметричные дифференциалы

Конический дифференциал (кинематическая схема дана на рис. 3.1, а и 3.2, а). Обычный дифференциал с коническими зубчатыми колесами, применяемый в грузовых автомобилях, имеет чаще всего четыре сателлита (рис. 3.16) или, реже, три. Большинство легковых автомобилей имеет дифференциалы с двумя сателлитами. Они могут свободно вращаться вокруг шипов неподвижной крестовины, концы которой зажаты между чашками корпуса дифференциала, и постоянно находятся в зацеплении с шестернями полуосей. В общем случае сателлиты опираются на внутренние стенки

Читайте также:  Капремонт двигателя пассата б3

Рис. 3.16. Конический дифференциал (без корпуса):

а — в сборе; б — в разобранном виде; 1 — шестерни полуосей; 2 — сателлиты; 3 — крестовина; 4 — опорная шайба шестерни полуоси; 5 — опорные шайбы сателлитов

корпуса через опорные шайбы 5 скольжения, а полуосевые шестерни — через опорные шайбы 4. Составные части (чашки) корпуса дифференциала соединяют между собой с помощью болтов или винтов, причем часто для этого применяют установочные штифты. Корпус дифференциала в большинстве случаев имеет фланец, к которому с помощью болтов или заклепок крепится шестерня главной передачи. Иногда ведомая шестерня соединяется с корпусом дифференциала с помощью болтов, соединяющих обе его чашки.

Каждый из конических сателлитов работает как рычаг между двумя шестернями полуосей, поэтому крутящий момент, снимаемый с корпуса дифференциала, теоретически делится поровну между шестернями полуосей и, следовательно, между ведущими колесами. Такое распределение моментов происходит независимо от траектории движения транспортного средства и дорожных условий.

Конические дифференциалы, отличающиеся высоким механическим КПД, наиболее распространены и находят применение в большинстве автомобилей, преимущественно легковых. Существенный недостаток обычного конического дифференциала заключается в задерживании вращения одного из ведущих колес при скольжении другого колеса данного моста.

Цилиндрический дифференциал. В некоторых автомобилях применяют цилиндрический дифференциал, который отличается от конического только выполнением сателлитов в виде пар цилиндрических шестерен (рис. 3.17). Такая конструкция не нарушает упомянутого выше принципа действия конического дифференциала, причем роль конического сателлита выполняет пара цилиндрических шестерен, а выходных шестерен — цилиндрические шестерни, установленные на концах полуосей. Длину зубьев сателлитов и их положение выбирают такими, чтобы каждый сателлит частью своего

зубчатого венца зацеплялся с цилиндрической шестерней полуоси. Остальной частью зубчатого венца сателлит взаимодействует с другим сателлитом (равным ему по размерам), который зацепляется с цилиндрической шестерней другой полуоси. К корпусу дифференциала болтами крепится ведомая коническая шестерня главной передачи. Вместе с ведомой шестерней вращается корпус дифференциала, а также закрепленные в нем оси сателлитов.

Рис. 3.17. Конструктивная схема цилиндрического дифференциала при главной передаче:

а — конической; б — червячной; 1 и 2 — шестерни полуосей; 3 —корпус дифференциала; 4 и 5 — сателлиты; 6 — шестерня ведомая коническая; 7 — шестерня ведущая коническая; 8 — червяк; 9 — колесо червячное

Недостатком цилиндрического дифференциала является необходимость применения большого числа сателлитов, что усложняет конструкцию и увеличивает массу ведущего моста. Обычно такой дифференциал короче, но при одной и той же передаваемой мощности имеет больший диаметр. Использование дифференциала большего диаметра создает трудности в обеспечении необходимого дорожного просвета автомобиля. Малая ширина оказывается желательной для применения в некоторых отраслях промышленности.

Рис. 3.18. Шариковый дифференциал:

1 — левая полуось; 2 и 6 — шестерни полуосей; 3 — ведущая шестерня главной передачи; 4 — водило; 5 — сателлиты, 7 — правая полуось

Шариковый дифференциал. Оригинальная конструкция автомобильного дифференциала показана на рис. 3.18. В этой конструкции шариковые сателлиты 5 установлены в водиле 4, имеющем форму плоской коробки. Крутящий момент, передаваемый передачей этого типа, не может быть большим вследствие возникновения больших давлений (теоретически нагрузка передается одной точкой), которые приводят к быстрому изнашиванию передачи.

Сложный дифференциал. Оригинальная конструкция главной передачи с дифференциалом ведущего моста производства фирмы «Киркстолл» применена в автотягаче «Энтар» фирмы «Торникрофт» (рис. 3.19). Дифференциал, кроме функции равномерного распределения крутящего момента по обеим полуосям, выполняет роль редуктора, который представляет собой вторую ступень главной передачи. К червячному колесу прикреплен корпус 4 планетарной передачи с коронной шестерней с внутреннего зацепления, установленной в подшипниках 2 и 10. Планетарная передача состоит из шестерни с внутреннего зацепления, солнечной шестерни а и сателлитов b, установленных в водиле 3, которое, в свою очередь, размещено на шлицах левой полуоси 1. Солнечная шестерня а составляет одно целое с ведущей шестерней d, которая вращает шестерню f внутреннего зацепления посредством трех промежуточных шестерен е. Оси этих шестерен установлены на пальцах б, закрепленных в детали 5, которая болтами присоединена к картеру. Шестерня f внутреннего зацепления, выполненная в корпусе 7, установлена на шлицах правой полуоси 8.

Левая полуось вращается в направлении движения вследствие вращения вперед коронной шестерни с внутреннего зацепления.

Рис. 3.19. Главная передача и дифференциал автотягача «Энтар» (фирмы «Торникрофт»). Ведущий мост изготовляет фирма «Киркстолл» :

а — солнечная шестерня планетарной I передачи; b — сателлит планетарной I передачи? с — шестерня внутреннего зацепления планетарной I передачи; d — шестерня ведущая II передачи, е — шестерня промежуточная II передачи; f — шестерня внутреннего зацепления II. передачи; / — левая полуось; 2 — шариковый подшипник левой полуоси; 3 — водило планетарной передачи; 4 — корпус планетарной I передачи; 5 и 9 — опорный элемент; 6 — палец; 7 — корпус II передачи; 8 — правая полуось; 10 — роликовый подшипник

Читайте также:  Машина глохнет если резко даешь газу

Это происходит в том случае, когда солнечная шестерня а остается неподвижной. Однако, если солнечная шестерня останется свободной, то она будет вращаться в противоположную сторону, поэтому скорость водила 3 и полуоси 1 будет меньше, чем в случае закрепления солнечной шестерни. Вращение солнечной шестерни а назад сопровождается вращением ведущей шестерни d> которая заставляет вращаться вперед правую полуось. Это приводит к некоторому уменьшению частоты вращения.

Так как к полуосям должны подводиться равные моменты, то шестерни d, е и / должны иметь определенное передаточное число по отношениям к шестерням с и а, причем условие симметричности данного дифференциала имеет вид (с/а) + 1 = f/d , в которое необходимо вместо символов шестерен проставить число имеющихся на них зубьев.

Заметим, что для вала, на котором выполнены шестерни а и d, находящиеся в зацеплении с сателлитами Ь и е применены только торцовые опоры. Это обеспечивает равномерное распределение крутящего момента, подводимого к шестерням and, между ними.

Цилиндрический дифференциал с передаточным числом iw = 2. На рис. 3.20 представлены все элементы главной передачи и дифференциала, применяемого в автомобиле «Олдсмобил торнадо», причем схема цилиндрического дифференциала представлена на рис. 3.10. Так как в конструкции ведущего моста приняты интересные решения, рассмотрим их. Чтобы избежать трудностей, обычно возникающих с вертикальным смещением ведущей гипоидной шестерни относительно ведомой, была выбрана конструкция конической главной передачи. Это позволило расположить полуоси на такой высоте, при которой обеспечивается достаточное расстояние от них до масляного резервуара и дорожный просвет не менее 164 мм в полностью груженом автомобиле (пять человек и багаж). В целях выполнения картера главной передачи компактным и узким применен цилиндрический дифференциал. Коронная шестерня внутреннего зацепления (наружный диаметр 250 мм) размещена внутри ведомой шестерни главной передачи.

Масло, используемое для главной передачи, образует достаточно прочную пленку и оказывает хорошую сопротивляемость задиру. Шестерни главной передачи изготовляют из стали 4617 по стандарту SAE, причем для того, чтобы понизить напряжения, применяют крупные зубья. Эксперименты, проведенные с литым стальным корпусом дифференциала, показали, что его твердость недостаточна даже после термообработки. Тогда были применены термо-обработанные поковки из стали 4118 по стандарту SAE. Диаметр делительной окружности шестерни внутреннего зацепления равен 152,4 мм, а диаметральный питч 12 дюйм -1 . Солнечная шестерня изготовлена из стали 4617 по стандарту SAE. После долгих экспериментов с разными типами карданных шарниров для полуосей были выбраны шарниры равных угловых скоростей Рцеппа. При каждом внутреннем шарнире применено скользящее шлицевое соединение с комплектом шариков между поверхностями зубьев и впа-

Рис. 3.20. Передний ведущий мост автомобиля «Олдсмобил торнадо» (разрез главной передачи; левой полуоси и цапфы переднего колеса): 1 — ось двигателя; 2 — ось автомобиля

дин. Рабочие поверхности полуосей предохраняются специальными кожухами. Магнитные деформированные кольца, установленные в канавках, обеспечивают высокую антикоррозийную стойкость.

Для автомобилей с колесной формулой 4 х4 или 6 хб часто требуется неравномерное распределение крутящего момента между ведущими мостами. Например, в автомобиле с колесной формулой ‘4 х4, задние сдвоенные колеса способны воспринять вес больший, чем одиночные передние колеса, по крайней мере в 2 раза. Если для распределения крутящего момента между передним и задним мостами будет применен обычный симметричный дифференциал, то для создания тяговой силы будет использоваться только половина веса, приходящегося на задний мост, так как к задним колесам невозможно подвести крутящий момент больший, чем к передним.

В грузовых автомобилях с двумя или более ведущими мостами крутящий момент должен быть распределен между этими мостами пропорционально нагрузкам, действующим на них. К сожалению, ни один из существующих несимметричных дифференциалов не соответствует этому требованию. Простые несимметричные дифференциалы распределяют крутящий момент (при малом внутреннем трении) пропорционально радиусу действия окружного усилия (см. рис. 3.2, б и в) коронной и солнечной шестерен (см. рис. 3.2, д) либо тангенсам углов конусов сателлитов к образующим которых прилагаются окружные усилия (см. рис. 3.2, г).

Несимметричные дифференциалы (см. рис. 3.2, б и в) могут быть применены только для малых перераспределений крутящего момента, так как передаваемый крутящий момент пропорционален радиусу действия окружного усилия на выходной шестерне. Наибольшее отношение крутящих моментов можно получить в конструкции, разработанной согласно рис. 3.2, г. Однако в этом случае диаметр корпуса дифференциала получается большим. В настоящее время среди несимметричных дифференциалов наибольшее применение имеют конструкции, выполняемые по схеме рис. 3.2, д.

Оцените статью