Какие мероприятия не позволяют снизить токсичность отработавших газов автомобильных двигателей

Меры по снижению токсичности двигателей.

К эффективным мерам, направленным на снижение токсичности бензиновых двигателей, относятся:

  1. Выделение углеводородов ослабляется при уменьшении отношения поверхности к объёму камеры сгорания, но концентрация оксидов углерода и азота снижается незначительно;
  2. Осуществление рециркуляции отработавших газов, поступающих во впускной трубопровод двигателя. При полной нагрузке двигателя, когда рециркуляция составляет 10-12%, концентрация оксидов азота уменьшается почти в 2 раза.;
  3. Использование водобензиновых смесей. При работе бензинового двигателя на эмульсии, содержащей 12% воды, выброс оксида углерода с отработавшими газами уменьшается в 2 раза. При этом отсутствует детонация топлива.

К эффективным мерам, направленным на снижение токсичности и дымности дизелей, относятся:

1. Проведением рециркуляции отработавших газов, часть которых (до 20% объёма подаваемого воздуха) направляется во впускной трубопровод двигателя, что снижает концентрацию оксидов азота в отработавших газах на 40-50%.

2. Подачей воды во впускной трубопровод или в цилиндры двигателя в количестве, составляющем 6% массы топлива, что снижает концентрацию оксидов азота в 2 раза.

3. Использованием дизельного топлива с повышенным цетановым числом для уменьшения содержания в отработавших газах оксидов азота и углеводородов.

4. Применением антидымных присадок на основе бария, марганца и др.

5. Поддержанием дизеля в технически исправном состоянии, обеспечением стабильности регулировок топливной аппаратуры и периодического контроля токсичности и дымности отработавших газов.

Снижению токсичности двигателей также способствует:

  1. Установка на автомобилях (перед глушителем) каталитических нейтрализаторов, в которых токсичные вещества отработавших газов превращаются в продукты, не оказывающие отрицательного влияния на окружающую среду, позволяют снизить токсичность отработавших газов по оксиду углерода — на 80%, по оксидам азота на 30%, по углеводородам – на 70%.
  2. Применение в качестве топлива сжатых и сжиженных газов. Сжатые природные газы СПГ (метан и др.), сжиженные нефтяные газы СНГ (пропан, бутан и др.).
  3. Применение новых видов топлива: синтетических спиртов (особенно метанола и этанола), аммиака и водорода.

Устройство автомобилей

Способы борьбы с токсичностью выхлопных газов

Резкое повышение концентрации вредных веществ в атмосферном воздухе, особенно в крупных мегаполисах, связанное с интенсивным ростом автомобильного парка, не могло остаться без внимания специалистов и экологов. Очевидно, что без автомобильного транспорта невозможно представить динамичное развитие человеческого общества, но и смириться с тем, что ежечасно миллионы людей отравляют свой организм, вдыхая отраву, выбрасываемую из автомобильных глушителей, конечно же, нельзя.
Поэтому разработкам, связанным с уменьшением вредного влияния транспорта на окружающую среду, ученые, специалисты и инженеры в последние годы уделяют все более пристальное внимание.

Конечно же, наиболее привлекательным методом исключения пагубного влияния техники на условия среды обитания человека является внедрение технологий и разработок, позволяющих использовать экологически чистые и безвредные энергоресурсы.

К таковым, безусловно, можно отнести электрическую энергию и энергию, выделяемую при химических процессах, конечным продуктом которых являются безвредные для человека и природы вещества, например, вода, образуемая при соединении водорода и кислорода. Эта химическая реакция сопровождается значительным выделением тепловой энергии, которую можно было бы использовать для преобразования в механическую энергию посредством тепловых двигателей, однако в окружающей нас природе мало свободного водорода, который можно было бы использовать в виде автомобильного топлива.
Конечно, на нашей планете достаточно большое количество воды, в составе которой водорода более, чем достаточно, но расщеплять воду на составляющие элементы для последующего соединения – все равно, что изобретать вечный двигатель, поскольку затраты превысят эффект.

Электричество – экологически чистый и очень привлекательный источник энергии, но преобразовывать другие энергоресурсы в электроэнергию без значительных затрат человечество пока не научилось, как не научилось и запасать в достаточном объеме эту энергию впрок. Даже самый современный аккумулятор электрической энергии способен обеспечить работу автомобиля лишь в течение нескольких десятков километров пробега. Этого для удовлетворения возрастающих автотранспортных нужд, конечно же, недостаточно.

Привлекательным источником энергии является ядерная (атомная) энергия. Но на современном этапе развития технологий преобразования этого колоссального источника энергии в легкодоступные для практического использования виды говорить очень и очень рано.

По этим причинам в ближайшем будущем достойной замены нефтепродуктам, как основным источникам энергии для автомобильных двигателей, не предвидится.

В настоящее время определено несколько путей снижения токсичности выхлопных газов, выделяемых автомобилями и другой техникой, использующих тепловые двигатели, работающие на нефтяном топливе.
Основные направления снижения содержания вредных веществ в отработавших газах:

  • совершенствование процессов сгорания топлива;
  • повышение качества топлива;
  • применение различных способов очистки отработавших газов от токсичных и вредных компонентов.

Полнота сгорания топлива

Совершенствование процессов сгорания топлива выгодно не только с точки зрения экологии, но и экономичности. Полностью сгоревшее топливо отдает максимум тепловой энергии для работы двигателя и выделяет в отходы значительно меньше вредных веществ, чем топливо, сгоревшее частично.

Совершенствование процессов горения топлива связано с решением многих задач – улучшение смесеобразования, повышение эффективности работы газораспределительного механизма, систем питания и зажигания двигателя.

Читайте также:  Вопросы билетов по от слесарей по ремонту автомобилей

В последние годы значительную долю этих задач конструкторы решают внедрением компьютерных технологий в процессы управления работой двигателя. Управляемые электроникой системы впрыска и зажигания, безусловно, способствуют повышению качества сгорания горючей смеси, и, конечно же, это благотворно сказывается на экологичности тепловых двигателей.

Повышение качества топлива

Повышение качества используемого для работы двигателей топлива, безусловно, имеет колоссальное значение для улучшения эклогичности автотранспорта. В любом топливе, используемом для извлечения тепловой энергии, лишь два химических элемента представляют энергетическую ценность – водород и углерод. Первый при окислении образует воду, второй – либо оксид углерода (при неполном сгорании), либо двуокись углерода (при полном сгорании).
При идеально отлаженной системе питания и зажигания эти два элемента сгорают полностью и отдают двигателю необходимую для его работы теплоту. Но идеального ничего не бывает, поэтому в выхлопных газах, как правило, присутствует некоторое количество оксида углерода, который в быту называют угарным газом.

Любое топливо, в том числе и получаемое из нефтепродуктов, содержит посторонние примеси, химические вещества и элементы в связанном или свободном состоянии. Безусловно, они тоже участвуют в процессах горения, образуя различные окислы, зачастую очень токсичные.
К таковым относятся, в первую очередь различные соединения серы и азота. Выделяя малое количество теплоты, эти вещества значительно обогащают отработавшие газы вредными примесями, т. е. являются крайне нежелательным топливным балластом.

Поэтому повышение качества топлива напрямую связано с его очисткой от механических, сернистых и азотных примесей в процессе переработки нефти. Очень выгодным в этом плане является применение газообразного топлива для двигателей, поскольку в нефтяных и природных газах посторонних примесей существенно меньше, что положительно сказывается на экологичности отходов сгорания.

Нейтрализация отработавших газов

Для очистки продуктов сгорания от токсичных и вредных веществ на двигателях, использующих в качестве топлива бензин, применяют системы нейтрализации отработавших газов вместе с системой их рециркуляции и системой улавливания паров топлива.

Основным элементом в системе нейтрализации отработавших газов является каталитический нейтрализатор, устанавливаемый в выпускной системе автомобильного двигателя.

Нейтрализатор внешне похож на обычный резонатор и часто устанавливается вместо него. Он представляет собой химический реактор с катализатором – веществом, активизирующим протекание реакций превращения одних веществ в другие.
Главными элементами каталитического нейтрализатора являются один или два каталитических сотовых блока, представляющие собой керамические или листовые гофрированные металлические цилиндры с множеством продольных каналов. На поверхность этих каналов (сот блока) нанесен пористый каталитический состав, содержащий благородные металлы (платина, палладий, родий).
Каталитический блок помещается в корпус из жаростойкой и коррозионно-стойкой стали.

Все современные нейтрализаторы являются трехкомпонентными, т. е. предназначенными для снижения выброса трех основных токсичных компонентов отработавших газов и сочетают в себе сразу две химические функции: окислительную и восстановительную.
Нейтрализатор одновременно дожигает (окисляет) не полностью сгоревшие частички топлива и продукты его неполного сгорания (в первую очередь — оксид углерода), а также восстанавливает очень ядовитые оксиды азота, разлагая их на исходные составляющие – азот и кислород.

При использовании каталитического нейтрализатора нельзя применять этилированный бензин, поскольку содержащийся в нем свинец, осаждаясь на внутренних поверхностях выпускной системы, нарушает газовую проницаемость микропор активного каталитического слоя.
В результате отработавшие газы свободно выходят в атмосферу, не соприкоснувшись с активной поверхностью катализатора.

Нейтрализатор отработавших газов начинает эффективно работать при температуре не менее 300 ˚С, при этом он начинает дополнительно разогреваться в результате происходящих в нем химических процессов. Важно так разместить нейтрализатор в системе выпуска отработавших газов, чтобы его температура во время работы не превышала 900…950 ˚С, иначе возможно разрушение каталитического слоя, сот и даже корпуса нейтрализатора.
В этом случае сгоревший нейтрализатор не только перестает выполнять свою функцию, но и существенно снижает мощность двигателя, оказывая сопротивление выпуску отработавших газов, и ухудшая тем самым наполняемость цилиндров свежим зарядом.

Особенно велика вероятность повреждения нейтрализатора при отказе в работе одного из цилиндров двигателя. При этом несгоревшая в цилиндре горючая смесь загорается в нейтрализаторе, интенсивно разогревая и сжигая активную каталитическую поверхность его сот.

Для обеспечения эффективной работы нейтрализатора отработавших газов и точного дозирования топлива, подаваемого в цилиндры двигателя, используется лямбда-зонд, или кислородный датчик, который отслеживает состав выхлопных газов и корректирует посредством электронного блока управления количество подаваемого в цилиндры топлива.

Токсичность автомобильных двигателей

Непрерывный рост автомобильного парка потребовал введения в большинстве стран мира норм на выброс токсичных веществ с отработавшими газами, а также ряда других требований, связанных с улавливанием паров топлива и картерных газов.

Срез действующего каталитического нейтрализатора

Согласно существующим законам двигатели большегрузных автомобилей (с общей массой более 3,5 т) и автобусов при разработке и сертификации проходят испытания на моторных стендах. Нормируются три компонента отработавших газов: оксид углерода (CO), углеводороды (CH) (пары несгоревшего топлива и продукты неполного сгорания) и оксиды азота (NOx). При этом используется 13-ти ступенчатый цикл, который включает в себя работу на холостом ходу, режиме максимального крутящего момента при нагрузках 2, 25, 50, 75, 100%, опять на холостом ходу и далее на номинальной мощности (100%) с постепенным уменьшением нагрузки (75, 50, 25, 2% от полной) и снова холостой ход. Нормы при испытании на моторных стендах задаются в г/кВт·ч. Заметим, что содержание в отработавших газах канцерогенных веществ пока не нормируется.

Читайте также:  По допускам производителей автомобилей допуски масел

Проверка проводится только на трех скоростных режимах, что позволяет при электронных системах управления на большинстве эксплуатационных режимов устанавливать оптимальные регулировочные параметры. Именно это определяет очень сложные алгоритмы подачи топлива, закономерности изменения углов опережения зажигания и впрыскивания топлива.

Автомобили и микроавтобусы с общей массой до 3,5 т испытываются на роликовом стенде, моделирующем движение на различных передачах с заданными скоростями, режимы разгона и торможения двигателем. В европейском ездовом цикле задаются скорости от 15 до 120 км/ч. Для автомобилей с максимальной скоростью менее 130 км/ч (малые грузовики, грузопассажирские автомобили и др.) максимальная скорость ездового цикла ограничивается 90 км/ч. Для замера токсичности используется аппаратура, обеспечивающая разбавление отработавших газов воздухом и определение содержания СН пламенно-ионизационным способом.

Для выполнения норм Еuro-2 и Еuro-3, а также действующих в США и ряде других стран требуется применение трехкомпонентных каталитических нейтрализаторов в сочетании с микропроцессорной системой управления топливоподачей и зажиганием, работающей с обратной связью от кислородного датчика. Некоторые нейтрализаторы для получения минимальных выбросов оксидов азота и углеводородов требуют работы двигателя на незначительно обогащенных смесях (коэффициент избытка воздуха не 1, а 0,96. 0,98). Современные электронные блоки управления позволяют производить необходимое смещение качества смеси. Это, в частности, использовано для ряда двигателей отечественного производства.

На дизельных двигателях для снижения СО, СН и NОx также применяются каталитические нейтрализаторы, а на транспортных средствах, работающих в закрытых помещениях, устанавливаются фильтры для улавливания сажи и твердых частиц.

В эксплуатационных условиях испытания на роликовом и моторном стендах не возможны. Поэтому токсичность бензиновых двигателей измеряется на двух режимах холостого хода: при минимальной (nmin) и повышенной (nпов) частоте вращения. Последняя задается предприятием-изготовителем или принимается в пределах от 2 000 об/мин до 80% от номинальной. Концентрацию СО и СН (в %) определяют газоанализаторами непрерывного действия, использующими принцип инфракрасной спектроскопии и отвечающими требованиям ГОСТ. Необходимо иметь в виду, что эти приборы регистрируют только часть углеводородов – примерно в 2. 5 раз меньше, чем пламенно-ионизационные. Оксиды азота не нормируют и не замеряют, так как их выброс на описанных режимах невелик.

Схема установки сажевого фильтра на погрузчике

Заметим, что выбросы СО и СН при nmin не определяют общей загазованности атмосферы, поскольку не превышают 10. 12% от общего выброса токсичных компонентов. Так что ужесточение норм на этом режиме снизит загазованность только в каких-то локальных зонах, например, на перекрестках или в автопарках.

На режиме nпов в карбюраторных двигателях кроме системы холостого хода в действие вступают переходная, а иногда и главная дозирующая системы. При этом удается косвенно оценить правильность регулировок этих систем. С этого режима целесообразно начинать проверку содержания СО и СН.

Для автомобилей без нейтрализаторов концентрация СО не должна превышать 2%. Для устойчивой работы двигателя при минимальном расходе топлива содержание СО должно находиться в пределах 0,5. 1,0%. Концентрация СН для двигателей с числом цилиндров до четырех включительно ограничена 600 млн-1, при большем числе цилиндров – 1 000 млн-1. При исправном двигателе и правильной регулировке системы топливоподачи концентрация СН находится в пределах 50. 150 млн-1. Замер состава газов следует проводить не ранее, чем через 30 секунд после установления заданного режима, чтобы исключить влияние топлива, дополнительно впрыснутого ускорительным насосом при открытии дроссельной заслонки, и дать возможность отработавшим газам дойти от цилиндра до газоанализатора.

В случае повышенной концентрации СО, а следовательно, и СН необходимо прочистить воздушные жиклеры системы холостого хода и главной дозирующей системы. Следует помнить, что в карбюраторах К-151 (автомобили УАЗ, «Газель», «Волга») в системе холостого хода их два, причем второй имеет малый диаметр и поэтому засоряется особенно часто. Если после прочистки воздушных жиклеров концентрация СО остается выше нормы, то в карбюраторах ДААЗ-2105, 2106, 2107 состав смеси можно отрегулировать винтом производственной подстройки. Иногда из-за засорения отверстия, соединяющего воздушный канал карбюратора с эмульсионным каналом, сделать этого не удается. Прочистить канал можно тонкой проволокой или завернув винт до упора и отвернув его на столько же оборотов – конус иглы сам прочистит отверстие.

В карбюраторах, не имеющих винта производственной подстройки, приходится увеличивать калиброванную часть воздушного жиклера холостого хода, причем в карбюраторах с параллельным открытием дросселей (К-89, К-90, К-135 грузовых автомобилей ЗИЛ и ГАЗ) необходимо обеспечить равную пропускную способность обоих жиклеров (разница не выше 3. 5%).

Причиной повышенной концентрации СН могут быть перебои искрообразования из-за переобеднения смеси, шунтирования свечей, обгорания контактов прерывателя-распределителя и других неисправностей электрических цепей. Как правило, выброс СН удается уменьшить за счет увеличения искрового промежутка до 0,8. 0,9 мм. При низкой концентрации СО неустойчивая работа двигателя, рывки при трогании могут возникнуть из-за частичного засорения топливного жиклера или низкого уровня топлива в поплавковой камере. В карбюраторах К-151 для улучшения ездовых качеств и уменьшения выброса СН рекомендуется повысить уровень топлива в поплавковой камере на 4 мм (до 19 мм от плоскости разъема крышки).

Читайте также:  Текущий ремонт двигателя ваз
Мультитестер Bosch

В двигателях, оборудованных нейтрализаторами, концентрация СО не должна превышать 0,7%, а СН – 200 млн-1 для двигателей с числом цилиндров до четырех и 300 млн-1 – при большем числе цилиндров. В случае необходимости выброс СН можно снизить установкой более позднего зажигания. Однако при этом увеличивается расход топлива и ухудшается динамика разгона.

Отрегулировав двигатель при nпов, переходим на режим nmin.

Согласно действующим нормам при техническом осмотре концентрация СО не должна превышать 3,5%. У двигателей с карбюраторами К-151, К-131 (автомобили УАЗ, ГАЗ), ДААЗ-2105,2107 (автомобили ВАЗ) с автономной системой холостого хода минимальная концентрация СН (180. 250 млн-1) достигается при СО 0,3. 0,5%. Норма СН составляет 1 200 млн-1. Однако рекомендуется регулировать карбюратор так, чтобы содержание СО было в пределах 0,8. 1,0%, для обеспечения гарантированного запаса на возможные изменения состава смеси при эксплуатации. Для автомобилей с нейтрализатором норма СО – 1%, СН – 400 или 600 млн-1.

Бывают случаи, когда при завернутом до упора винте качества смеси концентрация СО превышает норму. В карбюраторах К-151 это происходит, когда калиброванное отверстие в первом топливном канале системы холостого хода имеет слишком большую пропускную способность. В этом случае необходимо уменьшить это отверстие, а иногда даже заглушить его. В карбюраторе ДААЗ-2108 и его модификациях одной из причин высокой концентрации СО является прорыв мембраны пневмопривода клапана экономайзера мощностного режима. Клапан в этом случае остается открытым постоянно. Топливо через прорванную мембрану и демпфирующий жиклер, расположенный в нижней части корпуса карбюратора, попадает в задроссельное пространство, что ведет не только к высокой концентрации СО, но и к увеличению расхода топлива. Временно до замены мембраны можно заглушить демпфирующий жиклер и жиклер экономайзера, однако это сопровождается снижением максимальной скорости автомобиля.

Регулирование двухкамерных карбюраторов грузовых автомобилей ЗИЛ и ГАЗ К-89, К-90, К-135 с параллельным открытием дроссельных заслонок требует определенных навыков.

При nmin целесообразно начинать регулирование по СН. Вращением винта качества одной из камер необходимо добиться минимальной концентрации СН. Затем нужно повторить операцию с винтом качества другой камеры и, в случае необходимости, винтом количества установить заданную частоту вращения. После этого проверить концентрацию СО. Если она окажется выше нормы, то следует обеднить смесь, поворачивая последовательно винты качества обеих камер точно на одинаковые углы до тех пор, пока концентрация не снизится до нормы. Затем нужно снова проверить концентрацию СН. При повышенной концентрации СН можно несколько увеличить частоту вращения или уменьшить опережение зажигания.

Дизельные двигатели грузовых автомобилей и автобусов проверяются на непрозрачность (дымность) выхлопа, которая оценивается в процентах при помощи дымомеров путем просвечивания пробы отработавших газов на заданных режимах. Среди приборов зарубежного производства наиболее известны «Хартридж» и МК-3. Из многочисленных отечественных дымомеров наиболее полно основным требованиям к таким приборам отвечает «Измеритель дымности переносной ИДП-2».

Пламенно-ионизационный детектор

ИДП-2 измеряет коэффициент светопропускания столба отработавших газов заданной длины и преобразует аналоговые сигналы датчиков в единицы дымности (в процентах или в виде коэффициента ослабления светового потока, м-1), приведенные к нормализованным значениям температуры газа (100°С) и фотометрическим данным (430 мм). Источник света – лампа накаливания МН 6,3В-0,3А, датчик – кремниевый фотодиод ФД-24К. Прибором можно пользоваться при температурах выше –20°С. Его питание обеспечивает батарея из 10 элементов VARTA 5006 0,75 А·ч.

Измерения проводятся после полного прогрева двигателя. При наличии двух выхлопных труб дымность замеряют в каждой из них. После подключения прибора частота вращения доводится до максимальной. Этот режим выдерживается до достижения температуры отработавших газов, соответствующей инструкции. Измерение дымности проводится при изменении частоты вращения от минимальной до максимальной путем быстрого нажатия на педаль подачи топлива до упора и отпускания ее. Интервал цикла не более 15 секунд. Циклы повторяются 10 раз, но в зачет принимаются только последние четыре. На этих режимах дымность не должна превышать 40% для двигателей без наддува и 50% для двигателей с наддувом. Затем проводится замер при максимальной частоте вращения коленчатого вала после нажатия педали подачи топлива до упора и стабилизации показаний прибора, но не ранее, чем через 30 секунд. При этом норма на дымность – 15%.

В настоящее время готовится новый стандарт, в котором предусмотрены более жесткие требования для автомобилей с каталитическими нейтрализаторами.

Оцените статью