- Камеры сгорания двигателей
- Камера сгорания двигателя
- Материал из ТеплоВики — энциклопедия отоплении
- Содержание
- Класификация
- Камера сгорания непрерывного действия
- Принцип работы
- Требования, предъявляемые к камере сгорания непрерывного действия
- Камера сгорания периодического действия
- Камера сгорания работающей на бензине
- Камера сгорания дизельного топлива
- Требования ко всем камерам сгорания двигателя
Камеры сгорания двигателей
Камеры сгорания В современных бензиновых двигателях с верхним расположением клапанов преимущественно используются камеры сгорания следующих типов: полусферические, полисферические, клиновые, плоскоовальные, грушевид- ные, цилиндрические. Существуют смешанные варианты камер сгорания. Форма камеры сгорания определяется расположением клапанов, формой днища поршня, расположением свечи, а иногда и двух свечей зажигания, наличием вытеснителей. При проектировании двигателя с учетом применяемого топлива и заданной степени сжатия к камерам сгорания предъявляются следующие требования: обеспечение высоких скоростей сгорания, снижения требований к октановому числу топлива, минимальных потерь с охлаждающей жидкостью, низкой токсичности, технологичности производства. Это определяется следующими условиями:
—компактностью камеры сгорания;
—эффективной турбулизацией смеси во время сгорания;
—минимальным отношением площади поверхности
камеры сгорания к рабочему объему цилиндров. Как уже отмечалось, одним из способов повышения эффективного КПД двигателя является увеличение степени сжатия. Основной причиной ограничения степени сжатия является опасность появления аномальных процессов сгорания (детонации, калильного зажигания, грохота и др.). У современных серийных двигателей, имеющих достаточно высокие степени сжатия, дальнейшее их увеличение даст сравнительно небольшой эффект и связано с необходимостью решения ряда проблем. Прежде всего — это возникновение детонации. Именно она определяет требования к величине степени сжатия и форме камеры сгорания. После воспламенения рабочей смеси от искры фронт пламени распространяется по камере сгорания, давление и температура в этой части заряда растут до 50. 70 бар и 2000. 2500 С, в наиболее удаленной от свечи части рабочей смеси происходят предпламенные химические реакции. При невысокой частоте вращения коленчатого вала, особенно в двигателях с большим диаметром цилиндров, время на эти реакции иногда оказывается достаточным, чтобы остаточная часть заряда сгорала с высокими скоростями (до 2000 м/с).
Детонационное сгорание вызывает появление ударных волн, распространяющихся по камере сгорания с высокой скоростью, вызывая металлические стуки, иногда неправильно называемых стуком пальцев. Ударная волна, разрушая пристеночный слой газов с пониженной температурой, способствует повышению теплоотдачи в стенки цилиндра, камеры сгорания, тарелки клапанов, днище поршня, вызывая их перегрев и увеличивая тепловые потери в двигателе. Работа с сильной детонацией приводит к общему перегреву двигателя, ухудшению мощностных и экономических показателей. При длительной езде с интенсивной детонацией начинается эрозия стенок камеры сгорания, оплавление и задиры поршня, повышенный износ верхней части цилиндра из-за срыва масляной пленки, поломка перемычек между канавками поршневых колец и задиры зеркала цилиндра, прогар прокладки головки цилиндров. К числу факторов, влияющих на требования к октановому числу топлива, относится компактность камеры сгорания, характеризуемая степенью нарастания объема сгоревшей части смеси (в % к полному объему камеры сгорания) по мере удаления условного фронта пламени от свечи. Наиболее компактными являются полусферические, шатровые камеры сгорания, имеющие пониженные требования к октановому числу. Однако для повышения степени сжатия до 9,5. 10,5 в полусферических или полисферических камерах иногда приходится днище поршня делать выпуклым, что существенно ухудшает степень компактности и соответственно повышает требования к октановому числу, которые возрастают на 3. 5 единиц. В современных двигателях с 4 клапанами в одном цилиндре свеча располагается в центре камеры сгорания. Это обеспечивает максимальную степень нарастания объема.
Другим параметром, характеризующим антидетонационные качества, является степень турбулизации смеси в процессе сгорания. Интенсивность турбулизации зависит от скорости и направления потока смеси на входе в камеру сгорания. Одним из способов создания интенсивной турбулизации является увеличение площади вытеснителя (объема расположенного между днищем поршня и плоскостью головки цилиндров) с целью турбулизации заряда для увеличения скорости сгорания. Вытеснители имеют клиновые, овальные, грушевидные камеры сгорания. При замене плоскоовальной камеры сгорания на грушевидную, увеличении за счет этого площади вытеснителя при одновременном уменьшении его высоты на двигателях автомобилей УАЗ удалось без изменения требований к ОЧ топлива поднять степень сжатия на 0,5, за счет чего расход топлива уменьшился на 5. 7%, а мощность увеличилась на 4. 5%. У двигателей УЗАМ 331 и у некоторых двигателей грузовых автомобилей (ЗИЛ-508.10) для создания вихревого движения заряда перед впускным клапаном канал выполнялся улиткообразным. Однако при высоких скоростях смеси это приводило к увеличению сопротивления и соответственно снижению мощностных показателей. Поэтому последние модели двигателей УЗАМ выпускаются с обычным впускным каналом. Полусферические, полисферических цилиндрические камеры сгорания практически не имеют вытеснителя, поэтому их антидетонационные качества (по индексу детонации) уступают камерам с вытеснителями. При массовом производстве двигателей за счет отклонения размеров деталей кривошипно-шатунного механизма и объема камеры сгорания фактическая степень сжатия двигателя одной модели может отличаться на значительную величину (в пределах одной единицы). Поэтому для автомобиля одной и той же модели часто требуются бензины с разным октановым числом. Фактическую степень сжатия приблизительно можно определить при помощи компрессометра.
а — полусферическая; б — полусферическая с вытеснителем; в — сферическая; г — шатровая; д — плоскоовальная; е -клиновая; з — цилиндрическая камера сгорания в поршне; ж — полуклиновая с частью камеры в поршне;
Камера сгорания двигателя
Материал из ТеплоВики — энциклопедия отоплении
Камера сгорания двигателя — объём, образованный совокупностью деталей двигателя в котором происходит сжигание горючей смеси. Конструкция камеры сгорания определяется условиями работы и назначением механизма; как правило используются жаропрочные материалы. В зависимости от температуры, развиваемой в камере сгорания непрерывного действия, в качестве конструкционных материалов для их изготовления применяют:
- до 500 °С — хромоникелевые стали;
- до 900 °С — хромоникелевые стали с добавкой титана;
- выше 950 °С — специальные материалы.
Камера сгорания — это замкнутое пространство, полость для сжигания газообразного, или жидкого топлива в двигателях внутреннего сгорания.
Камера сгорания газотурбинного двигателя — устройство, в котором в результате сгорания топлива повышается температура поступающего в него воздуха (газа).
Содержание
Класификация
По принципу действия
- Непрерывного действия (для газотурбинных двигателей (ГТД), турбореактивных двигателей (ТРД), воздушно-реактивных двигателей (ВРД), жидкостных ракетных двигателей (ЖРД)).
- Периодического действия (для поршневых двигателей внутреннего сгорания (ДВС));
Камеры сгорания непрерывного действия в свою очередь класифицируют:
По назначению
- Основные;
- Резервные;
- Промежуточного подогрева;
По направлению потока воздуха и продуктов сгорания
- прямоточные;
- противоточные камеры сгорания (последние применяют редко из-за большого гидравлического сопротивления).
По конструктивных особенностях корпуса и жаровой трубы
Камеры сгорания периодического действия в свою очередь класифицируют:
По используемому топливу
По конструкции бензиновые камеры сгорания разделяют:
По конструкции дизельные камеры сгорания разделяют:
-
- Неразделенные (имеют только одно отделение, в котором происходит и смесеобразование, и сгорание топлива)
- Разделенные (разделены на две части: основную и дополнительную, соединены между собой горловиной. При этом топливо впрыскивается в дополнительную камеру)
По способу смесеобразования
-
- Обьемное (для неразделенных камер сгорания);
- Пленочное;
- Комбинированные.
Камера сгорания непрерывного действия
Камера сгорания непрерывного действия относятся к числу важнейших узлов авиационных и космических двигательных установок, специальных и транспортных газотурбинных установок, которые находят широкое применение в энергетике, химической промышленности, на ж.-д. транспорте, морских и речных судах.
Принцип работы
Камера сгорания является узлом газотурбинного двигателя (ГТД), в котором происходит приготовление и сжигание топливовоздушной смеси. Для приготовления топливовоздушной смеси в камеру сгорания подводится через форсунки топливо и поступает воздух из компрессора. В процессе запуска двигателя поджог топливовоздушной смеси производится электрической искрой (или пусковым устройством), а при дальнейшей работе процесс горения поддерживается непрерывно вследствие контакта образующейся топливовоздушной смеси с раскаленными продуктами сгорания. Образовавшийся в камере сгорания газ направляется в турбину компрессора.
Устойчивость и совершенство процессов в камере сгорания в значительной степени обеспечивают надежную и экономичную работу газотурбинного двигателя.
Требования, предъявляемые к камере сгорания непрерывного действия
- Устойчивость процесса горения при всех возможных режимах и полетных условиях. Необходимо, чтобы сгорание топлива было непрерывным и не было срыва пламени или пульсационного горения, что может вызвать самовыключение двигателя. В процессе изменения режима работы двигателя и полетных условий изменяется соотношение топлива и воздуха, поступающих в камеру сгорания, т.е. изменяется качество смеси.
- Обеспечение равномерного поля температуры газов перед турбиной. Обычно камеры сгорания имеют несколько форсунок для подвода топлива, поэтому имеется тенденция к получению зон различной температуры на выходе газов из камеры сгорания. Значительная неравномерность поля температур газов может приводить к разрушению турбинных лопаток.
- Минимальная длина факела пламени, т.е. процесс сгорания, должен заканчиваться в пределах камеры сгорания. В противном случае пламя доходит до лопаток соплового аппарата, что может привести к их прогару.
- Надежность в эксплуатации, большой срок службы, удобство контроля и технического обслуживания. Обеспечение длительной и надежной работы камеры сгорания достигается как рядом конструктивных мероприятий, так и строгим соблюдением правил летной и технической эксплуатации. Для максимального выполнения перечисленных требований каждому типу двигателя подбирается соответствующий тип камеры сгорания.
Камера сгорания периодического действия
Камера сгорания работающей на бензине
Конструкции камер сгорания автомобильных двигателей различны. У двигателей с верхним расположением клапанов применяют центральные камеры, а также камеры полуклинового и клинового типов. При нижнем расположении клапанов основной объем камеры сгорания смещен в сторону от оси цилиндра (Г-образная форма); такая конструкция камеры способствует усилению завихрения горючей смеси и улучшает смесеобразование. На современных двигателях широко применяют камеры сгорания полуклинового и клинового типов.
Клиновая камера сгорания — полученная из плоскоовальной наклоном клапанов для получения лучшей формы газовых каналов. Свеча зажигания в этом случае сдвинута в сторону выпускного клапана, движение заряда в камере направлено к свече. У клинообразной камеры сгорания большая часть ее объема сконцентрирована возле свечи, благодаря чему сначала должно сгорать наибольшее количество заряда, а в самой удаленной от свечи зоне камеры сгорания, где имеется опасность детонации, должно находиться сравнительно небольшое количество переохлажденной смеси в зазоре вытеснителя. Такая камера обеспечивает мягкое сгорание и низкие тепловые потери. Жесткость работы двигателя оценивается скоростью нарастания давления, т. е. повышением давления в цилиндре при повороте коленчатого вала на решающее значение имеет участок поворота, соответствующий интервалу между образованием искрового разряда (воспламенение смеси) и ВМТ. Мягким считается процесс сгорания, при котором скорость нарастания давления лежит в пределах 0,2 – 0,6 МПа на 1° угла поворота коленчатого вала. Уровень шума при работе двигателя зависит также от зазоров между поршнем и цилиндром и между валом и его подшипниками.
Широко применявшаяся ранее полуклиновая камера сгорания претерпевает в настоящее время изменения. Камера такой формы применяется у двигателей спортивных, гоночных автомобилей для достижения высокой удельной мощности. При использовании в головке цилиндра двух распределительных валов и большом угле развала клапанов можно разместить в головке цилиндра клапаны большого диаметра. При этом поверхность камеры сгорания по отношению к ее объему достаточно мала. Обеспечивается также хорошее втекание заряда через клапаны в цилиндр, поскольку ему не препятствуют стенки цилиндра или камеры сгорания. Впускной и выпускной каналы имеют небольшую длину и малую поверхность. Двигатели с такой камерой сгорания имеют довольно высокий КПД.
Камера сгорания дизельного топлива
У дизельных двигателях требования к форме камеры сгорания определяются процессом смесеобразования. Для создания рабочей смеси в них отводится очень малое время, так как почти сразу после начала впрыска топлива начинается сгорание, и остаток топлива подается уже в горящую среду. Каждая капля топлива должна войти в соприкосновение с воздухом как можно быстрее, чтобы выделение теплоты произошло в начале хода расширения.
Пленочное смесеобразование применяется в ряде конструкций камер сгорания, когда почти все топливо направляется в пристеночную зону. В центральную часть камеры сгорания попадает приблизительно 5–10% впрыскиваемого форсункой топлива. Остальная часть топлива распределяется на стенках камеры сгорания в виде тонкой пленки (10–15 мкм). Первоначально воспламеняется часть топлива, попавшая в центральную часть камеры сгорания, где обычно отсутствует движение заряда и устанавливается наиболее высокая температура. В дальнейшем, по мере испарения и смешения с воздухом, горение распространяется на основную часть топлива, направленную в пристеночный слой. При пленочном смесеобразовании требуется менее тонкое распыливание топлива. Применяют форсунки с одним сопловым отверстием. Давление впрыска топлива не превышает 17–20 МПа.
Пленочное смесеобразование по сравнению с объемным обеспечивает лучшие экономические показатели двигателя, упрощает конструкцию топливной аппаратуры.
Основным недостатком являются низкие пусковые свойства двигателя при низких температурах в связи с малым количеством топлива, участвующего в первоначальном сгорании. Этот недостаток устраняют путем подогрева воздуха на впуске или за счет увеличения количества топлива, участвующего в образовании начального очага сгорания.
Комбинированное смесеобразование получается при меньших диаметрах камеры сгорания, когда часть топлива достигает ее стенки и концентрируется в пристеночном слое. Другая часть капель топлива располагается во внутреннем объеме заряда. На поверхности камеры оседает примерно 50% топлива. При впуске в камере не создается вращательного движения заряда. Заряд приводится в движение при вытеснении его из надпоршневого пространства в камеру сгорания, и создается вихрь. Скорость движения заряда достигает 40–45 м/с.
Отличительной особенностью от пленочного смесеобразования является встречное движение струй топлива и заряда, вытесняемого из надпоршневого пространства, что способствует увеличению количества топлива, взвешенного в объеме камеры сгорания, и сближает процесс с объемным смесеобразованием. Форсунки применяют с распылителями, имеющими 3–5 сопловых отверстий
Камеры сгорания с обьемным смесеобразованием. В дизельных двигателях с такими камерами топливо впрыскивается непосредственно в камеру сгорания форсункой с рабочим давлением 15–30 МПа, имеющей многодырчатые распылители (5–7 отверстий) с малым диаметром сопловых каналов (0.15–0.32 мм). Столь высокие давления впрыска применяются ввиду того, что в данном случае распыливание топлива и перемешивание его с воздухом достигается главным образом за счет кинетической энергии, сообщаемой топливу при впрыске. Для равномерного распределения топлива в камере форсунки таких двигателей часто выполняют с несколькими отверстиями.
Требования ко всем камерам сгорания двигателя
Основные требованиями для всех камер сгорания непрерывного действия являются:
- устойчивость процесса горения
- высокая теплонапряжённость
- максимальная полнота сгорания
- минимальные тепловые потери
- надёжная работа в течение установленного ресурса работы двигателя.