Использование выхлопных газов двигателя

Использование выхлопных газов двигателя

9.4. Использование теплоты, уносимой с отработавшими газами

Отработавшие газы двигателя содержат значительное количество тепловой энергии. Ее можно использовать, например, для отопления автомобиля. Подогрев воздуха отработавшими газами в газовоздушном теплообменнике системы отопления опасен из-за возможности прогорания или негерметичности его трубок. Поэтому для переноса теплоты используют масло или другую незамерзающую жидкость, нагреваемую отработавшими газами.

Еще целесообразнее использовать отработавшие газы для привода вентилятора системы охлаждения. При больших нагрузках двигателя отработавшие газы имеют наиболее высокую температуру, а двигатель нуждается в интенсивном охлаждении. Поэтому использование турбины, работающей на отработавших газах для привода вентилятора системы охлаждения, весьма целесообразно и в настоящее время начинает находить применение. Такой привод может автоматически регулировать охлаждение, хотя это достаточно дорого.

Более приемлемым с точки зрения стоимости можно считать эжекционное охлаждение. Отработавшие газы отсасывают из эжектора охлаждающий воздух, который смешивается с ними и отводится в атмосферу. Такое устройство дешево и надежно, так как не имеет никаких движущихся деталей. Пример эжекционной системы охлаждения показан на рис. 82.


Рис. 82. Схема эжекторного охлаждения

Эжекционное охлаждение было с успехом применено в гоночных автомобилях «Татра» и в некоторых специализированных автомобилях. Недостатком системы является высокий уровень шума, так как отработавшие газы необходимо непосредственно подводить в эжектор, а расположение глушителя шума за ним вызывает трудности.

Основным способом использования энергии отработавших газов служит их расширение в турбине, которая наиболее часто используется для привода центробежного компрессора наддува двигателя. Ее можно использовать также и для других целей, например, для упомянутого привода вентилятора; в турбокомпаундных двигателях она непосредственно соединяется с коленчатым валом двигателя.

В двигателях, использующих в качестве топлива водород, теплоту отработавших газов, а также отведенную в систему охлаждения можно использовать для нагревания гидридов, извлекая тем самым содержащийся в них водород. При таком способе эта теплота аккумулируется в гидридах, и при новой заправке гидридных баков водородом она может быть использована в различных целях для нагревания воды, отопления зданий и т. д. Этот способ использования энергии, теряемой при отводе теплоты в окружающую атмосферу, будет рассмотрен далее в гл. 19.

Энергию отработавших газов частично применяют для улучшения наддува двигателя, используя возникающие колебания их давления в выпускном трубопроводе. Использование колебаний давления состоит в том, что после открывания клапана в трубопроводе возникает ударная волна давления, со скоростью звука проходящая до открытого конца трубопровода, отражающаяся от него и возвращающаяся к клапану в виде волны разрежения. За время открытого состояния клапана волна может несколько раз пройти по трубопроводу. При этом важно, чтобы к фазе закрывания выпускного клапана к нему пришла волна разрежения, способствующая очистке цилиндра от отработавших газов и продувке его свежим воздухом. Каждое разветвление трубопровода создает препятствия на пути волн давления, поэтому наиболее выгодные условия использования колебаний давления создаются в случае индивидуальных трубопроводов от каждого цилиндра, имеющих равные длины на участке от головки цилиндра до объединения в общий трубопровод.

Скорость звука не зависит от частоты вращения двигателя, поэтому во всем ее диапазоне чередуются благоприятные и неблагоприятные с точки зрения наполнения и очистки цилиндров условия режима работы: На кривых мощности двигателя Ne и его среднего эффективного давления ре это проявляется в виде «горбов», что хорошо видно на рис. 83, где изображена внешняя скоростная характеристика двигателя гоночного автомобиля фирмы «Порше». Колебания давления используют также и во впускном трубопроводе: приход волны давления к впускному клапану, особенно в фазе ею закрывания, способствует продувке и очистке камеры сгорания.


Рис. 83. Внешняя скоростная характеристика двигателя гоночного автомобиля ‘Порше’ (ФРГ)

Если с общим выпускным трубопроводом соединяется несколько цилиндров двигателя, то число их должно быть не более трех, а чередование работы — равномерным с тем, чтобы выпуск отработавших газов из одного цилиндра не перекрывал и не влиял на процесс выпуска из другого. У рядного, четырехцилиндрового двигателя два крайних цилиндра обычно объединяются в одну общую ветвь, а два средних цилиндра — в другую. У рядного шестицилиндрового двигателя эти ветви образованы соответственно тремя передними и тремя задними цилиндрами. Каждая из ветвей имеет самостоятельный вход в глушитель, или на некотором расстоянии от него ветви объединяются и организуется их общий ввод в глушитель.

Использование энергии выхлопных газов

Все привыкли к тому, что выхлопные газы вредны для окружающей среды. Во первых они подогревают температуру воздуха, во вторых происходит выброс вредных веществ. Но, если копнуть глубже, окажется, что в выхлопных газах содержится большое количество энергии.

Для начала можно использовать турбину, которая будет приводиться в действие с помощью выхлопных газов. Но даже после совершение полезной работы выхлопные газы остаются достаточно нагретыми.

За идею качественного использования выхлопных газов давно взялась компания БМВ, которая постоянно готовит нам новые и замечательные сюрпризы в автомобильном мире.

В качестве достойного примера было принято использовать выхлопные газы для нагрева воды, далее вода превратится в пар. А пар будет использоваться в качестве привода для паровой машины, задача которой, подкручивать коленчатый вал двигателя автомобиля.

В качестве альтернативы такому способу появилась новая идея, которая была основана на превращении тепла от выхлопных газов в электрический ток.

Превращение тепла выхлопных газов в электрический ток

Для осуществления конвертации теплоты в ток было предложено установить термоэлектрический элемент. Это позволило бы сократить потребление электроэнергии от главного источника питания штатного генератора. Такая постановка задачи позволит значительно сэкономить ресурс движения автомобиля.

«Для конвертации 1 кВт*ч электроэнергии приходится сжечь на 6 кВт*ч бензина».

Итак, термоэлектрогенератор устанавливается на выхлопной трубе.

Принцип действия термоэлектрогенератора основан на основе «теллурида виснута», что обозначает конвертацию разницы температур охлаждающей жидкости и отработавших газов в электрический ток. Размеры данного устройства составляют 10 на 30 см и позволяет выдавать порядка 600 Вт дополнительной мощности.

Проблема , которая стала перед нами, заключается в том, что преобразование происходит при движение автомобиля со скоростью свыше 120 км/час. Аргументируется это малой температурой выхлопных газов. Но при хорошем разгоне по трассе свыше 120 км/час, можно получить дополнительно около 1 КВт, что для БМВ не проблема.

Читайте также:  Тесты по русскому 2013 тест драйв

Выхлопные газы автомобилей: состав

Примерный состав выхлопных газов карбюраторных и дизельных двигателей, об. %

Компонент Карбюраторные двигатели Дизельные двигатели
Азот 74–77 76–78
Кислород 0,3–8,0 2–18
Пары воды 3,0–5,5 0,5–4,0
Диоксид углерода 5,0–12,0 1,0–10,0
Оксид углерода 0,5–12,0 0,01–0,5
Оксиды азота 0,0–0,8 0,0002–0,5
Углеводороды неканцерогенные 0,2–3,0 0,009–0,5
Альдегиды 0,0–0,2 0,001–0,009
Сажа 0,0–0,4 г/м3 0,01–1,1 г/м3
Бенз(а)пирен До 10–20 мкг/м3 До 10 мкг/м3

Диоксид серы образуется в отработавших газах в том случае, когда сера содержится в исходном топливе (дизельное топливо). Анализ данных, приведенных в табл. 16, показывает, что наибольшей токсичностью обладает выхлоп карбюраторных ДВС за счет большего выброса СО, NOx, CnHm и др. Дизельные ДВС выбрасывают в больших количествах сажу, которая в чистом виде нетоксична. Однако частицы сажи, обладая высокой адсорбционной способностью, несут на своей поверхности частицы токсичных веществ, в том числе и канцерогенных. Сажа может длительное время находиться во взвешенном состоянии в воздухе, увеличивая тем самым время воздействия токсических веществ на человека.

Применение этилированного бензина, имеющего в своем составе соединения свинца, вызывает загрязнение атмосферного воздуха весьма токсичными соединениями свинца. Около 70% свинца, добавленного к бензину с этиловой жидкостью, попадает в атмосферу с отработавшими газами, из них 30% оседает на земле сразу за срезом выпускной трубы автомобиля, 40% остается в атмосфере. Один грузовой автомобиль средней грузоподъемности выделяет 2,5–3 кг свинца в год. Концентрация свинца в воздухе зависит от содержания его в бензине. Исключить поступление высокотоксичных соединений свинца в атмосферу можно заменой этилированного бензина на неэтилированный, что используют в Российской Федерации и ряде стран Западной Европы.

В дизельных двигателях с уменьшением нагрузки состав горючей смеси обедняется, поэтому содержание токсичных компонентов в отработавших газах при малой нагрузке уменьшается (рис. 77, б). Содержание СО и СnНm возрастает при работе на режиме максимальной нагрузки.

Количество вредных веществ, поступающих в атмосферу в составе отработавших газов, зависит от общего технического состояния автомобилей и особенно от двигателя – источника наибольшего загрязнения. Так, при нарушении регулировки карбюратора выбросы СО увеличиваются в 4–5 раз.

В процессе старения двигателя выбросы его увеличиваются из-за ухудшения всех характеристик. При износе поршневых колец увеличивается прорыв через них. Утечки через выхлопной клапан могут стать основным источником выбросов углеводородов.

Характеристики режима работы и конструкции, которые оказывают влияние на выбросы в карбюраторных двигателях, включают следующие параметры:

1) коэффициент избытка воздуха;

2) нагрузка или уровень мощности;

4) управление моментом;

5) образование нагара в камере сгорания;

6) температура поверхности;

7) противодавление выхлопа;

8) перекрытие клапанов;

9) давление во впускном трубопроводе;

10) соотношение между поверхностью и объемом;

11) рабочий объем цилиндра;

12) степень сжатия;

13) рециркуляция выхлопного газа;

14) конструкция камеры сгорания;

15) соотношение между ходом поршня и диаметром цилиндра.

Уменьшение количества выбрасываемых загрязняющих веществ достигается в современных автомобилях за счет использования оптимальных конструкторских решений, точной регулировки всех элементов двигателя, выбором оптимальных режимов движения, использованием топлива более высокого качества. Управление режимами движения автомобиля может осуществляться с помощью компьютера, устанавливаемого в салоне автомобиля.

Эксплуатационные и конструкторские параметры, влияющие на выбросы двигателей, в которых зажигание смеси происходит за счет сжатия, включают следующие характеристики:

1) коэффициент избытка воздуха;

2) опережение впрыска;

3) температура входящего воздуха;

4) состав топлива (включая присадки);

6) завихрение воздуха;

7) конструкция камеры сгорания;

8) характеристики форсунки и струи;

9) рециркуляция выхлопного газа;

10) система вентиляции картера.

Турбонаддув увеличивает температуру цикла и, таким образом, усиливает окислительные реакции. Эти факторы приводят к сокращению выбросов углеводородов. Чтобы уменьшить температуру цикла и таким образом сократить выброс оксидов азота, совместно с турбонаддувом может быть использовано промежуточное охлаждение.

Одним из наиболее перспективных направлений снижения выбросов токсичных веществ карбюраторных двигателей является использование методов внешнего подавления выбросов, т.е. после того, как они выйдут из камеры сгорания. К таким устройствам относятся термические и каталитические реакторы.

Цель использования термических реакторов состоит в том, чтобы доокислить углеводороды и оксид углерода посредством некаталитических гомогенных газовых реакций. Эти устройства предназначены для окисления, поэтому они не приводят к удалению оксидов азота. Такие реакторы поддерживают повышенную температуру выхлопных газов (до 900°С) в течение периода времени доокисления (в среднем до 100 мс), так что окислительные реакции продолжаются в выхлопных газах и после того, как они покинут цилиндр.

Каталитические реакторы устанавливаются в выхлопной системе, которая часто несколько удалена от двигателя и, в зависимости от конструкции, используется для удаления не только углеводородов и СО, но, кроме того, и оксидов азота. Для автомобильных транспортных средств используются такие катализаторы, как платина и палладий, для окисления углеводородов и СО. Для уменьшения содержания оксидов азота в качестве катализатора используется родий. Как правило, используется всего 2–4 г благородных металлов. Основные металлические катализаторы могут быть эффективными при использовании спиртовых топлив, но их каталитическая активность быстро падает при использовании традиционных углеводородных топлив. Применяются два вида носителей катализаторов: таблетки (γ-оксид алюминия) или монолиты (кордиерит или коррозионно-стойкая сталь). Кордиерит при применении его в качестве носителя покрывают γ-оксидом алюминия перед нанесением каталитического металла.

Каталитические нейтрализаторы конструктивно состоят из входного и выходного устройств, служащих для подвода и вывода нейтрализуемого газа, корпуса и заключенного в него реактора, представляющего собой активную зону, где и протекают каталитические реакции. Реактор-нейтрализатор работает в условиях больших температурных перепадов, вибрационных нагрузок, агрессивной среды. Обеспечивая эффективную очистку отработанных газов, нейтрализатор по надежности не должен уступать основным узлам и агрегатам двигателя.

Нейтрализатор для дизельного двигателя показан на рис. 78. Конструкция нейтрализатора осесимметрична и имеет вид «трубы в трубе». Реактор состоит из наружной и внутренней перфорированных решеток, между которыми размещен слой гранулированного платинового катализатора.

Назначение нейтрализатора заключается в глубоком (не менее 90 об %) окислении СО и углеводородов в широком интервале температур (250…800°С) в присутствии влаги, соединений серы и свинца. Катализаторы этого типа характеризуются низкими температурами начала эффективной работы, высокой термостойкостью, долговечностью и способностью устойчиво работать при высоких скоростях газового потока. Основным недостатком нейтрализатора этого типа является высокая стоимость.

Крайне нежелательным промежуточным продуктом может оказаться серная кислота. Для почти стехиометрической смеси сосуществуют как окисляющиеся, так и восстанавливающиеся составляющие в выхлопных газах.

Читайте также:  Письмо автоваза по расходу масла

Эффективность катализаторов может быть снижена в присутствии соединений металлов, которые могут поступать в выхлопные газы из топлива, добавок смазывающих материалов, а также вследствие износа металлов. Это явление известно под названием отравления катализатора. Особенно существенно понижают активность катализатора антидетонационные добавки тетраэтилсвинца.

Кроме каталитических и термических нейтрализаторов отработанных газов двигателей используются и жидкостные нейтрализаторы. Принцип действия жидкостных нейтрализаторов основан на растворении или химическом взаимодействии токсичных компонентов газов при пропускании их через жидкость определенного состава: вода, водный раствор сульфита натрия, водный раствор бикарбоната натрия. В результате пропускания отработанных газов дизельного двигателя снижается выброс альдегидов примерно на 50%, сажи – на 60–80%, происходит некоторое снижение содержания бенз(а)пирена. Главные недостатки жидкостных нейтрализаторов – это большие габариты и недостаточно высокая степень очистки по большинству компонентов выхлопных газов.

Повышение экономичности автобусов и грузовых автомобилей достигается прежде всего применением дизельных ДВС. Они обладают экологическими преимуществами по сравнению с бензиновыми ДВС, поскольку имеют меньший на 25–30% удельный расход топлива; кроме того, состав отработавших газов у дизельного ДВС менее токсичен.

Для оценки загрязнения атмосферного воздуха выбросами автотранспорта установлены удельные значения газовых выбросов. Имеются методики, позволяющие по удельным выбросам и количеству автомобилей рассчитать количество выбросов автотранспорта в атмосферу для различных ситуаций [3].

Состав выхлопных газов автомобилей

Образование токсичных веществ – продуктов неполного сгорания и окислов азота в цилиндре двигателя в процессе сгорания происходит принципиально различными путями. Первая группа токсичных веществ связана с химическими реакциями окисления топлива, протекающими как в предпламенный период, так и в процессе сгорания – расширения. Вторая группа токсичных веществ образуется при соединении азота и избыточного кислорода в продуктах сгорания.

Реакция образования окислов азота носит термический характер и не связана непосредственно с реакциями окисления топлива.

Поэтому рассмотрение механизма образования данных токсичных веществ целесообразно вести раздельно.

К основным токсичным выбросам автомобиля относятся: отработавшие газы (ОГ), картерные газы и топливные испарения. Отработавшие газы, выбрасываемые двигателем, содержат окись углерода (СО), углеводороды (СХ HY ), окислы азота (NOX ), альдегиды и сажу. Картерные газы – это смесь части отработавших газов, проникшей через неплотности поршневых колец в картер двигателя, с парами моторного масла.

Топливные испарения поступают в окружающую среду из системы питания двигателя: стыков, шлангов и т.д. Распределение основных компонентов выбросов у карбюраторного двигателя следующее: отработавшие газы содержат 95% СО, 55% СХ HY и 98% NOX, картерные газы по – 5% СХ HY, 2% NOX, а топливные испарения – до 40% СХ HY.

В общем случае в составе отработавших газов двигателей могут содержаться следующие нетоксичные и токсичные компоненты: О, О2, О3, С, СО, СО2, СН4, Cn Hm, Cn Hm О, NO, NO2, N, N2, NH3, HNO3, HCN, H, H2, OH, H2 O.

Вредные токсичные выбросы можно разделить на регламентированные и нерегламентированные.

Они действуют на организм человека по-разному. Вредные токсичные выбросы: СО, NOX, CX HY, RX CHO, SO2, сажа, дым. СО (оксид углерода) – этот газ без цвета и запаха, более легкий, чем воздух. Образуется на поверхности поршня и на стенке цилиндра, в котором активация не происходит вследствие интенсивного теплоотвода стенки, плохого распыления топлива и диссоциации СО2 на СО и О2 при высоких температурах.

NOX (оксиды азота) – самый токсичный газ из ОГ.

N – инертный газ при нормальных условиях.

Активно реагирует с кислородом при высоких температурах.

Выброс с ОГ зависит от температуры среды. Чем больше нагрузка двигателя, тем выше температура в камере сгорания, и соответственно увеличивается выброс оксидов азота.

Гидроводороды (Сx Нy ) – этан, метан, бензол, ацетилен и др.

токсичные элементы. ОГ содержат около 200 разных гидроводородов.

В дизельных двигателях Сx Нy образуются в камере сгорания из-за гетерогенной смеси, т.е. пламя гаснет в очень богатой смеси, где не хватает воздуха за счет неправильной турбулентности, низкой температуры, плохого распыления.

ДВС выбрасывает большее количество Сx Нy, когда работает в режиме холостого хода, за счет плохой турбулентности и уменьшения скорости сгорания.

Дым – непрозрачный газ.

Дым может быть белым, синим, черным. Цвет зависит от состояния ОГ.

Белый и синий дым – это смесь капли топлива с микроскопическим количеством пара; образуется из-за неполного сгорания и последующей конденсации.

Белый дым образуется, когда двигатель находится в холодном состоянии, а потом исчезает из-за нагрева. Отличие белого дыма от синего определяется размером капли: если диаметр капли больше длины волны синего цвета, то глаз воспринимает дым как белый.

Синий дым бывает от масла.

Наличие дыма показывает, что температура недостаточна для полного сгорания топлива. Черный дым состоит из сажи. Дым отрицательно влияет на организм человека, животных и растительность.

Сажа – представляет собой бесформенное тело без кристаллической решетки; в ОГ дизельного двигателя сажа состоит из неопределенных частице с размерами 0,3…100 мкм.

Причина образования сажи заключается в том, что энергетические условия в цилиндре дизельного двигателя оказываются достаточными, чтобы молекула топлива разрушилась полностью. Более легкие атомы водорода диффундируют в богатый кислородом слой, вступают с ним в реакцию и как бы изолируют углеводородные атомы от контакта с кислородом. Образование сажи зависит от температуры, давления в камере сгорания, типа топлива, отношения топливо-воздух.

SO2 (оксид серы) – образуется во время работы двигателя из топлива, получаемого из сернистой нефти (особенно в дизелях); эти выбросы раздражают глаза, органы дыхания.

SO2,H2 S – очень опасны для растительности.

Главным загрязнителем атмосферного воздуха свинцом в Российской Федерации в настоящее время является автотранспорт, использующий этилированный бензин: от 70 до 87% общей эмиссии свинца по различным оценкам. РЬО (оксиды свинца) – возникают в ОГ карбюраторных двигателей, когда используется этилированный бензин.

При сжигании одной тонны этилированного бензина в атмосферу выбрасывается приблизительно 0,5… 0,85 кг оксидов свинца. По предварительным данным, проблема загрязнения окружающей среды свинцом от выбросов автотранспорта становится значимой в городах с населением свыше 100 000 человек и для локальных участков вдоль автотрасс с интенсивным движением.

Радикальный метод борьбы с загрязнением окружающей среды свинцом выбросами автомобильного транспорта – отказ от использования этилированных бензинов.

Альдегиды (Rx CHO) – образуются, когда топливо сжигается при низких температурах или смесь очень бедная, а также из-за окисления тонкого слоя масла в стенке цилиндра.

Читайте также:  Как заменить масло лодочного мотора тохатсу

При сжигании топлива при высоких температурах эти альдегиды исчезают.

Загрязнение воздуха идет по трем каналам: 1)ОГ, выбрасываемые через выхлопную трубу (65%); 2)картерные газы (20%); 3)углеводороды в результате испарения топлива из бака, карбюратора и трубопроводов (15%).

Производство индивидуальных ароматических углеводородов (бензола и толуола).

Данное производство осуществляют на установке Л Г-35-8/ЗООБ, сырьем которой служит фракция 62-105°С.

В отличие от установки каталитического риформинга, работающей на по­лучение высокооктановых компонентов автобензина, это производство имеет в своем составе дополнительные блоки, имеющие специфическое назначение: блок селективного гидрирования непредельных углеводо­родов (догидрирования), блок экстракции с регенерацией растворителя и блок ректификации экстракта на индивидуальные ароматические угле­водороды.

Селективное гидрирование непредельных углеводородов.

В составе уста­новки ароматизации имеется отдельный блок, основной частью которо­го является реактор догидрирования, заполненный алюмоплатиновым катализатором с низким содержанием платины АН-10, АП-15 или ГО-1. Назначение этого блока — гидрирование непредельных углеводородов в составе ароматизированного катализата (обычно до 1,5%). Температура гидрирования 180-22СГС, объемная скорость 5-7 ч

’, давление 1,4-2,0 МПа. При нормальной работе блока гидрируются только олефино-вые углеводороды, концентрация ароматических углеводородов в катализате остается неизменной.

При этом разность температуры на входе в реактор и выходе из него не должна превышать 6- !0°С, в противном слу­чае это будет свидетельствовать о снижении селективности гидрирова­ния. Обычно это наблюдается в конце цикла работы катализатора. Характеристика катализаторов селективного гидрирования приведена в табл.

Таблица Характеристика катализаторов селективного гидрирования

Показатели Катализаторы
АП-10 АП-15 ГО-1
Массовая доля компонентов катализатора платина 0.10+0,01 0,15 ±0.01 0,10 ±0,01
рений 0,25 ±0,005
кадмии 0,01 ±0,002
Насыпная плотность, г/см 0,64 +0,4 0,64 +0,4 0.63 ±0,05
Коэффициент прочности (средний), кг/мм, не менее 0,97
Размер таблеток, мм: диаметр 2, 8 ±0.2
длина 5 ±2
Каталитические свойства: активность — бромное число гидрированного катализата, г брома на 100 см’ продукта, не более 0,1
селективность— абсолютная разность между массовой долей ароматических углево­дородов в сырье и в продукте.

Свойства выхлопных газов

Многие владельцы дизельных автомобилей, генераторов, котлов беспокоятся о выхлопных газах.

И не напрасно, ведь хорошо известно, что выхлопные газы токсичны. Главный вопрос, который они задают: — Каково поведение выхлопных газов и как скоро они улетучатся сами по себе? Постараемся ответить на эти вопросы…

Начнем с того, что выхлопные газы современных двигателей внутреннего сгорания, к которым относятся так же и дизельные двигатели, вовсе не один газ, а смесь газов. Каждый из них обладает определенными свойствами, которые определяют не только токсичность, но и летучесть.

Летучесть – это свойство газа подниматься в атмосфере вверх или опускаться вниз.

Летучесть зависит от плотности газа. Если он плотнее воздуха – газ опускается, наоборот – поднимается.

Выхлопной коктейль состоит из более чем 200 компонентов.

Вот только основные:

  • Азот (N) – доля в выхлопе около 77%. Не токсичен.
  • Кислород (О2) – доля в выхлопе 2-15%. Не токсичен.
  • Пары воды (H2O) – доля в выхлопе около 3%. Не токсичны.

Эти газы, абсолютно безобидны и являются компонентами атмосферного воздуха, который используется в дизельных двигателях для образования топливной смеси.

Из-за того, что эти газы химически и физически весьма стабильны, они не претерпевают каких-либо изменений.

  • Углекислый газ (СО2) – доля в выхлопе около 5%. Не токсичен, является продуктом сгорания топлива. Он полезен для роста растений, однако оказывает негативное влияние на атмосферу Земли, повышая ее температуру.
    Плотность углекислого газа – 1,97 кг/м3.

Он тяжелее воздуха, следовательно, не поднимается вверх, а наоборот скапливается в подвалах, канавах, углублениях.

  • Угарный газ (СО) – доля в выхлопе около 2%. Очень токсичен. Опасен тем, что не имеет цвета и запаха. Угарный газ воздействует на нервную и сердечно сосудистую систему человека, вызывая кислородное голодание, сонливость, обмороки, удушье, смерть.
    Плотность угарного газа – 1,15 кг/м3.

Он чуть легче воздуха, следовательно, поднимается вверх, медленно скапливаясь в мансардах, под крышами домов.

  • Оксид азота (NO2) – доля в выхлопе около 0,5%. Очень токсичен. Представляет собой газ бурого цвета с характерным запахом.
    При контакте NO2 с влагой (слизистые оболочки глаз, носа, бронхов) образуется азотная кислота, поражающая легкие человека. При высоких концентрациях NO2 возникают астма и отек легких.
    NO2 опасен тем, что вдыхая его в достаточно высоких концентрациях, человек не имеет неприятных ощущений и не предполагает опасности отравления.При длительном воздействии NO2, у человека развивается хронический бронхит, гастрит, язва желудка, сердечная недостаточность, нервные расстройства.
    Плотность оксида азота – 2,05 кг/м3. Он тяжелее воздуха, следовательно, опускается вниз, скапливаясь в подвалах, канавах, углублениях.
  • Углеводороды (CxHx) – доля в выхлопе около 0,2%. Токсичны. Даже в малых концентрациях вызывают головную боль, головокружение, обмороки. Они оказывают неблагоприятное воздействие на сердечно сосудистую систему человека.Углеводородные соединения обладают также канцерогенным действием. Канцерогены — это вещества, способствующие возникновению и развитию раковых заболеваний.Особой канцерогенной активностью отличается ароматический углеводород бензапирен С20H12, который хорошо растворяется в маслах, жирах, сыворотке человеческой крови. Накапливаясь в организме человека до опасных концентраций, бензапирен стимулирует образование злокачественных опухолей.

CxHx легче воздуха, следовательно, поднимаются вверх, скапливаясь в мансардных помещениях, под крышами домов, сараев.

  • Альдегиды (R-CHO) – доля в выхлопе около 0,005%. Токсичны. Вызывают раздражение слизистой оболочки дыхательных путей, глаз и т. д. Способны накапливаться в организме, приводя к хроническим заболеваниям.
    Альдегиды тяжелее воздуха, следовательно, опускаются вниз, скапливаясь в подвалах, канавах, углублениях.
  • Сернистый ангидрид (SO2) – доля в выхлопе около 0,05%. Токсичен. При взаимодействии с водой образует серную кислоту. Пагубно воздействует на слизистые оболочки дыхательных путей, глаз. Обладает резким, неприятным запахом.
    Плотность SO2 – 2,63 кг/м3. Он тяжелее воздуха, следовательно, опускается вниз, скапливаясь в подвалах, канавах, углублениях.
  • Вот такая картина. Кроме того, следует учесть, что время жизни некоторых ядовитых компонентов до 5 лет. Накапливаясь где-то в подвалах жилых построек, гаражах эти газы вряд ли «уйдут» сами, как надеются многие владельцы дизельной техники. Они скорее отравят всё живое…

    Отсюда вытекают основные правила безопасности:

    • Не стоять рядом с прогреваемым автомобилем.
    • Прогревать автотранспорт желательно на открытой и продуваемой местности, а не у стены, и уж тем более, не в гараже!
    Оцените статью