- Ионный двигатель
- Ионный двигатель для космических аппаратов.
- Сущность, строение и принцип работы ионного двигателя:
- Схема и устройство ионного двигателя:
- Преимущества ионного двигателя для космического аппарата:
- Перспективы применения ионных двигателей:
- Достигнутые технические характеристики ионного двигателя. Тяга, скорость, КПД ионного двигателя:
- Применение ионных двигателей:
- Ионный двигатель
- Содержание
- [править] История
- [править] Принцип действия
- [править] Миссии
- [править] Действующие миссии
- [править] Планируемые миссии
- [править] Нереализованные миссии
- [править] Проекты будущего
- [править] Ионный двигатель в фантастике
Ионный двигатель
Ионный двигатель для космических аппаратов.
Технология находится в процессе разработки!
Ионный двигатель создает возможность разогнать космический аппарат в условиях невесомости до скоростей, недоступных сейчас никаким другим из существующих типов космических двигателей.
Сущность, строение и принцип работы ионного двигателя:
Ионный двигатель – тип электрического ракетного двигателя , принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.
Впервые устройство ионного двигателя было предложено русским ученым К.Э. Циолковским в 1906 г. В дальнейшем осуществлялось теоретическая проработка данного вопроса. В настоящее время происходит его практическое воплощение.
Ионный двигатель работает, используя ионизированный газ и электричество .
Рабочим телом, как правило, является ионизированный инертный газ ( аргон , ксенон и т. п.), но иногда и ртуть .
Инертный газ подается в ионизатор (газоразрядную, ионизирующую камеру) ионного двигателя . Сам по себе газ нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Зажигание двигателя инициируется кратковременной подачей электронов, эмитируемых в газоразрядную (ионизирующую) камеру. В ионизаторе высокоэнергетические электроны производят ионизацию рабочего тела – газа. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов.
Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток (положительно-заряженной и отрицательно-заряженной). Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против -225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя космический аппарат, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку (нейтрализатор), выбрасываются из двигателя под небольшим углом к соплу и потоку ионов.
Для выработки электричества используются солнечные батареи . Но в дальнейшем планируется использовать ядерные установки.
Использование внешнего магнитного поля в ионном двигателе позволяет повысить энергоэффективность системы.
Ионные двигатели характеризуются высоким импульсом. Они расходуют малое количество газа для совершения маневра.
Схема и устройство ионного двигателя:
Рис. 1. Устройство ионного двигателя
Преимущества ионного двигателя для космического аппарата:
– создает возможность разогнать космический аппарат в условиях невесомости до скоростей, недоступных сейчас никаким другим из существующих типов космических двигателей,
– расходует меньше топлива, чем обычные реактивные двигатели ,
– в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах ,
– для функционирования ионного двигателя достаточно небольшой электрической мощности – от 150 до 500 Ватт . Двигатели мощностью от 150 до 500 Ватт могут быть установлены на малые космические аппараты,
– низкая рабочая температура в отличии от обычных реактивных двигателей,
– рабочее тело не обязательно должно быть высокой степени чистоты в отличии от обычного топлива в химических ракетах,
– простота сборки и эксплуатации конструкции,
– ионный двигатель позволит увеличить срок эксплуатации космических аппаратов в 2-3 и более раза,
– для путешествия на Марс (и обратно) достаточно ионного двигателя мощностью порядка 50 кВт.
Перспективы применения ионных двигателей:
Применение ионных двигателей в космических аппаратах открывает новые перспективы развития космонавтики, в частности, запускаемых космических аппаратов.
Современные тенденции таковы, что доля запускаемых тяжелых космических аппаратов (свыше 1000 кг) неуклонно снижается и составляет порядка не более 30% от всех запусков.
Все более востребованными становятся малые космические аппараты, имеющие вес от 100 кг до 500 кг , находящиеся на низкой орбите до 1000 км. и функционирующие продолжительное время – в течение 5-10 лет.
К малым космическим аппаратам относятся спутники и системы мобильной связи и радионавигации, мониторинга Земли , атмосферы и околоземного космического пространства.
Ионные двигатели в ближайшем будущем позволят заменить двигатели орбитального движения малых космических аппаратов, что увеличит срок их активной работы (эксплуатации) в 2-3 раза и продлит срок их жизни с 2-3 лет до 5-10 лет.
В отдаленной перспективе планируется оснащать все, в т.ч. тяжелые, космические аппараты ионными двигателями , что позволит совершать путешествия к далеким планетам и звездам, пилотируемые экспедиции к планетам Солнечной системы, тяжелые транспортные перелеты.
Достигнутые технические характеристики ионного двигателя. Тяга, скорость, КПД ионного двигателя:
Характеристики: | Значение: |
Потребляемая мощность, кВт | 1—7 |
Скорость истечения ионов ионного двигателя, км/с | 20—50 |
Тяга ионного двигателя, мН | 20—250 |
КПД ионного двигателя, % | 60—80 |
Время непрерывной работы, лет | более 3 |
Применение ионных двигателей:
– управление ориентацией и положением на орбите искусственных спутников Земли (в настоящее время),
– главный тяговый двигатель небольшой автоматической космической станции (в настоящее время),
– главный тяговый двигатель тяжелых космических аппаратов (в будущем).
Источник: https://cyclowiki.org/wiki/Ионный_двигатель, https://go2starss.narod.ru/pub/E025_ID.html
Примечание: © Фото https://www.pexels.com, https://pixabay.com, https://go2starss.narod.ru/pub/E025_ID.html
российский новый ионный реактивный космический двигатель принцип работы своими руками для космических аппаратов в россии x3 википедия холла видео ksp купить перспективы
тяга схема принцип действия устройство работа ионного двигателя на эффекте холла
ионно плазменный двигатель на катушке тесла в домашних условиях кпд импульс
как сделать работает самый мощный высокочастотный ионный двигатель для дальнего космоса наса леонова
китай создал новый ионный двигатель 2759
Ионный двигатель
Ионный двигатель — отработанная на практике разновидность электрического ракетного двигателя [1] . Недостатком ионного двигателя является малая тяга (например разгон космического аппарата с весом автомобиля от 0 до 100 км/ч требует двух суток непрерывной работы ионного двигателя), которую невозможно увеличить из-за ограничений объемного заряда, однако продолжительное время функционирования ионного двигателя (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трех лет) позволяет за длительный промежуток времени разогнать космический аппарат небольшого веса до приличных скоростей [1] . Сфера применения: управление ориентацией и положением на орбите искусственных спутников Земли и главный тяговый двигатель небольшой автоматической космической станции [1] . Характеристики ионного двигателя: потребляемая мощность 1-7 кВт, скорость истечения 20-50 км/с, тяга 20-250мН, КПД 60-80 % [1] . Его рабочим телом является ионизированный газ (аргон, ксенон и т. п.).
Ионному двигателю в настоящее время принадлежит рекорд негравитационного ускорения космического аппарата в космосе без использования — Deep Space 1 смог увеличить скорость на 4,3 км/с, израсходовав 74 кг ксенона (но этот рекорд скорости в ближайшее время будет превзойден на 10 км/с космическим аппаратом Dawn) [1] . В американской лаборатории реактивного движения созданы ионные двигатели, способные непрерывно работать более 3 лет. Однако ионный двигатель не является самым перспективным типом электроракетного двигателя, поэтому данный рекорд скорости скорее всего будет превзойден холловским или магнитоплазмодинамическим двигателем [1] .
Схема действия ионного двигателя
Состояние | применяется на практике |
Потребляемая мощность | 1-7 кВт |
Скорость истечения | 20-50 км/с |
Тяга | 20-250мН |
КПД | 60-80 % |
Применение | управление ориентацией и положением на орбите искусственных спутников Земли; главный тяговый двигатель небольшой автоматической космической станции |
Содержание[править] ИсторияПринцип ионного двигателя довольно давно известен и широко представлен в фантастической литературе, компьютерных играх и кинематографе, но для космонавтики стал доступен только в последнее время. Однако реальный ионный двигатель по величине тяги оказался намного хуже фантастических моделей [1] . Прообраз ионного двигателя был создан в 1917 году Робертом Годдардом, а в 1954 году Эрнст Штулингер улучшил характеристики ионного двигателя [1] . В 1960 году был построен первый функционирующий широко-лучевой (broad-beam) ионный электростатический двигатель (создан в США в NASA Lewis Research Center). В 1964 году — первая успешная суборбитальная демонстрация ионного двигателя (SERT I) [1] тест на выполнимость нейтрализации ионного луча в космосе. В 1970 году — испытание на длительную работу ртутных ионных электростатических двигателей в космосе (SERT II). С 1970-х годов ионные двигатели на эффекте Холла использовались в СССР в качестве навигационных двигателей (двигатели СПД-60 использовались в 1970-х годах на «Метеорах», СПД-70 на спутниках «Космос» и «Луч» в 1980-х, СПД-100 в ряде спутников в 1990-х). [2] В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 [1] (первый запуск двигателя 10 ноября 1998). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003, и японский аппарат Хаябуса, запущенный к астероиду в мае 2003. Следующим аппаратом NASA, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначается для изучения Весты и Цереры, и несет три двигателя NSTAR, успешно испытанных на Deep Space 1. Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверх-низкую околоземную орбиту высотой всего около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник. [править] Принцип действияПринцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с [3] по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии. В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки. Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подаётся в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таким образом достигается тяга. С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели. В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме). Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель. В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против — 225 на внешней). В результате попадания ионов между сетками они разгоняются и выбрасываются в пространство, ускоряя корабль согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:
Чтобы ионный двигатель работал — нужны всего 2 вещи: газ и электричество. Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50-100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей. Однако разрабатываются более совершенные и мощные типы электроракетных двигателей (холловский и магнитоплазмодинамический), превосходящие ионный двигатель по величине тяги и как следствие конечной скорости космического аппарата [1] . [править] Миссии[править] Действующие миссии
[править] Планируемые миссииЕКА планирует использовать ионный двигатель в меркурианской миссии BepiColombo. Он будет базироваться на двигателе, основанном на Смарт-1, но станет более мощным (запуск намечен на 2011—2012). GSAT-4 LISA Pathfinder Международная космическая станция [править] Нереализованные миссииNASA вело проект «Прометей», для которого разрабатывался мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагалось, что такие двигатели в количестве восьми штук могли бы разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей». [править] Проекты будущегоСуществует проект межзвездного зонда с ионным двигателем, получающим энергию через лазер от базовой станции, что дает некоторое преимущество по сравнению с чисто космическим парусом (но в настоящее время данный проект неосуществим из-за технических ограничений) [4] . [править] Ионный двигатель в фантастикеВ Звездных войнах экономичный ионный двигатель развивает скорость до трети световой и используется для перемещения в обычном пространстве на небольшие по космическим меркам расстояния (например в пределах планетарной системы) [5] . |