3-ФАЗНЫЙ ИНВЕРТОР ОТ 220 В
Представляем довольно простую конструкцию небольшого инвертора для трехфазного двигателя, мощностью около 400 Вт. Инвертор питается от одной фазы переменного напряжения стандартных 220 В. На выходе выдается трехфазное напряжение 3x 220 В.
Схема трёхфазного инвертора
Тут основной элемент управления — FNA41560, который на Али стоит всего около 150 рублей. Правда стоимость остальных элементов гораздо больше. Самые дорогие компоненты — конденсаторы и дроссель. Ну да хватит о деньгах, перейдём к самой схеме 3-фазного преобразователя питания. На входе инвертора имеется схема коррекции коэффициента мощности, которая гарантирует что ток, потребляемый из сети, не искажается и находится в фазе с напряжением.
Напряжение на конденсаторах фильтра составляет приблизительно 430 В без нагрузки и падает до 400 В при нагрузке. В инверторе транзисторы переключаются с частотой 5 кГц, потому что для этой частоты и оптимизирован чип FNA41560, дедтайм для транзисторов составляет около 1,2 мкс (см. осциллограммы).
Инвертор имеет защиту от высокой температуры (свыше 105 С), короткого замыкания (от 5 А), высокого напряжения на конденсаторах фильтра (460 В). Защита от короткого замыкания автоматически сбрасывается в конце каждого цикла ШИМ (действует как ограничение тока). Это можно изменить в регистре микроконтроллера PIC33FJ32MC102 P1FLTACON на режим удержания. В режиме этом генераторы ШИМ отключаются и останавливаются до удаления проблемы. Частота регулируется многооборотным потенциометром, с разрешением 0,1 Гц. Регулируемый частотный диапазон от 1 Гц до 80 Гц. Полезный диапазон начинается с 5 Гц. Для генерации выходного сигнала использовался алгоритм VSM-пространственной векторной модуляции (как звучит-то!), который позволяет максимально использовать напряжение постоянного тока, подаваемое на модуль FNA41560.
Различия в формах сигналов, генерируемых с помощью SPWM и SVM, следующие. В случае SPWM максимальное межфазное напряжение на выходе инвертора может быть не более v3 / 2 x Udc, для SVM равно Udc — если не учитывать потери в транзисторах. Фактически, метод SVM дает примерно на 15% более высокое выходное напряжение по сравнению с методом синусоидальной ШИМ.
Следует помнить, что источник питания схемы не изолирован от сети, и при использовании следует соблюдать особые меры предосторожности. Отсутствие гальванической развязки потенциально опасно для жизни.
Сборку устройства предлагается начать с пайки, а затем запуска PFC-части, припаять интегральную микросхему MC33262, выпрямительный мост, диод D11, транзистор Q1 и дроссель, фильтрующие конденсаторы C17 и C22, к которым нужно припаять резисторы 470 кОм. Обмотка (3 катушки) должна быть намотана на дроссель, который будет питать микросхему MC33262. Для намотки использовался кабель от компьютерной сети. Конец и начало обмоток важны в плане полярности и должны быть подключены, как указано в инструкции по применению.
Питание инвертора следует подавать через термисторы, чтобы ограничить ток, протекающий через диод D11, или использовать другое решение, ограничивающее пусковой ток. В данном случае применено 2 термистора NTC6D-15 с максимальным током 5 А. Прямое подключение к сети может повредить диод D11. После пайки элементов схемы PFC, припаяны две последовательно включенные лампы накаливания 100W / 220V к конденсаторам, таким образом проверяем, работает ли PFC блок. Напряжение на лампочках должно быть 400 В.
Следующим шагом была пайка и проверка работы бестрансформаторного блока питания, построенного на микросхеме LNK306. На выходе его следует замерить напряжение, которое должно быть 15 В. В конце спаять FNA41560 и микроконтроллер, который должен быть запрограммирован в схеме. Разъем Pickit3, совместимый с J3, как раз и используется для программирования.
Для запуска схемы, помимо естественно включения питания, необходимо подать логическую единицу с выхода RA2 на вход RA3, после чего инвертор запускается до скорости, установленной потенциометром. Подключение RA3 к земле вызывает остановку инвертора — отключение транзисторов.
Важно управлять запуском или остановкой инвертора с выхода RA2 (контакт 1 на J4, как показано на схеме), потому что в случае слишком высокой температуры или других помех состояние R2 меняется на низкое, и инвертор выключается.
Обращает на себя внимание выход FVO (контакт 11) микросхемы FNA41560, который закорочен на массу, когда напряжение питания меньше 12 В, а также когда схема не запитана. Об этом свидетельствует светодиод, во время запуска и начальных тестов, когда источник питания от программатора pickit3 подключен к плате нужно помнить, что когда этот светодиод горит, на выходе микроконтроллера не генерируются сигналы ШИМ.
Чтобы избавиться от этой ошибки и получить сигналы ШИМ на выходе микроконтроллера, временно отключите питание от программатора и подключите 15 В к FNA41560. Конечно, выполняем эти действия только тогда, когда инвертор отключен от сети. Максимальное выходное напряжение инвертора получается при частоте 60 Гц. Для низких частот напряжение от 1 Гц до 5 Гц является постоянным. Выше 5 Гц U / f = константа увеличивается.
Схема была собрана на печатной плате размером 100 x 100 мм. Программа управления написана на C в среде MPLABX.
На фото видно,что между инвертором и двигателем включен LC-фильтр 3x L = 1,5 мГн и 3x C = 0,68 мкФ, что смягчает работу.
В заключение хотелось бы добавить, что помимо пусковых термисторов инвертор должен питаться от помехозащитного фильтра. Схема принципиальная 3-х фазного инвертора, программное обеспечение и рисунок печатной платы находятся в приложении. Оригинал
Подключение частотных преобразователей к электродвигателям — инструкции, схемы, описание
Современные преобразователи частоты для электродвигателей – многофункциональные электротехнические устройства, позволяющие регулировать скорость вращения ротора, момент силы на валу двигателя, а также обеспечивающие защиту от перегрева, кратковременных перегрузок, резкого изменения величины регулируемой характеристики, а также сочетающие в себе другие функции. При помощи этих устройств возможно подключать трехфазный двигатель в однофазную сеть без фазосдвигающего элемента, что позволяет избежать значительной потери мощности и перегрева обмоток.
Частотные регуляторы комплектуются дополнительным пультом для управления, который располагают на рабочем месте оператора. Большинство преобразователей частоты поддерживают распространенные протоколы обмена данными, их можно встраивать в комплексные АСУ ТП (Автоматизированная система управления технологическим процессом).
От правильно выбранного места монтажа частотного регулятора, а также соблюдения всех правил ТБ (техника безопасности) и требований производителя напрямую зависит работоспособность электропривода.
Подготовка к подключению
Перед подключением необходимо удостовериться, что модель преобразователя соответствует проектной, и все характеристики частотного регулятора совпадают с параметрами электродвигателя. Также напряжение в питающей сети не должно быть ниже или выше номинального напряжения частотника. Далее выбирают место для размещения преобразователя. Оно должно удовлетворять следующим условиям:
- Класс защиты корпуса от влаги и пыли должен соответствовать месторасположению частотного регулятора. Большинство устройств имеют исполнение IP20 и предназначены для монтажа в помещениях с низкой влажностью, вентилируемых электротехнических шкафах автоматики, в щитах управления приводом. Частотники IP54 и IP65 можно устанавливать на открытых местах рядом с двигателями. Это правило касается также внешних пультов управления, которыми комплектуются частотные преобразователи многих производителей.
- При монтаже в шкафах требуется обеспечить необходимое расстояние от стенок и между другими частотниками и устройствами автоматики, которые нагреваются в процессе работы. Величина расстояния зависит от мощности электротехнических устройств. Мощность вентиляторов должна соответствовать количеству частотных преобразователей и других электротехнических устройств и аппаратов, размещенных в одном шкафу, чтобы обеспечить достаточный отвод тепла.
- Частотный регулятор устанавливают на достаточном расстоянии от источников мощного электромагнитного поля, сильных вибраций. При невозможности соблюдения этого условия, устройства устанавливают в экранирующих шкафах на виброгасящих опорах. Устройство монтируют на ровной поверхности из негорючего материала, в месте, где исключено воздействие прямых солнечных лучей.
- Климатическое исполнение частотника также должно соответствовать интервалу температур, высоте над уровнем моря, влажности и другим условиям эксплуатации.
Подключение
Перед установкой и выполнением подключений нужно тщательно изучить инструкцию производителя. При выполнении этих работ необходимо также следовать нормам электробезопасности и ПУЭ (Правила устройства электроустановок).
- Сечение кабелей для подключения выбирают, исходя из номинального тока двигателя и преобразователя. Обычно оно указывается в инструкции. Рекомендуется выбирать максимально возможное сечение.
- Для защиты от коротких замыканий используют предохранители и автоматические выключатели. Выбор аппаратов защиты делается по стандартной методике. При подключении преобразователя автоматические выключатели устанавливают в разрыв фазных проводов.
- Входные и выходные силовые провода прокладывают отдельно. Также необходимо предусмотреть отдельную укладку контрольного управляющего кабеля.
- Для защиты от электромагнитных помех необходимо использовать экранированные кабели цепей управления. При использовании неэкранированных проводов при длине токоведущей линии больше 50 м требуются специальные фильтры. Некоторые модели частотников имеют встроенную защиту от наводок.
- Для сглаживания высших гармоник и бросков напряжения в силовых цепях допустимо устанавливать во входной силовой цепи дроссели и фильтры ВЧ. Подключение конденсаторов не допускается.
- Заземление частотного регулятора выполняется проводом с медной жилой, сечением, указанным в паспорте преобразователя, оно должно быть не меньше сечения жил питающего силового кабеля. Присоединение к заземляющему контуру осуществляется напрямую. Нельзя применять нулевой проводник в качестве заземления.
- Соединение обмоток двигателя звезда или треугольник выбирается, исходя из номинального напряжения частотного регулятора. Значения напряжения при разных способах соединения обмоток электродвигателя указаны в технической документации или на корпусе электрической машины. Двигатели с 2-мя скоростями с фазным ротором включают на одну скорость.
- Все подключения выполняют в строгом соответствии с инструкцией производителя частотного преобразователя. При наличии вентиляторов для принудительного воздушного охлаждения электрических машин, электромагнитных и резистивных тормозов, коммутирующих аппаратов, их также подключают к соответствующим управляющим клеммам преобразователя. Запрещается использовать частотный преобразователь как блок питания для мощных элементов электропривода. Присоединение датчиков обратной связи по температуре, нагрузке, скорости вращения вала также осуществляется согласно инструкции и общим требованиям.
Первый пуск
После выполнения всех подключений необходимо еще раз проверить правильность сборки схемы и качество контактных соединений. Далее приступают к настройке преобразователя, пробному пуску привода.
- Перед подачей напряжения на частотный преобразователь необходимо убедиться, что на устройстве отключена подача команд на двигатель, а запуск электрической машины никому не повредит.
- При включении питания должны заработать встроенные в частотник вентиляторы охлаждения и загореться дисплей. На нем должно отображаться состояние “ выключено ” или “OFF” .
- Далее требуется восстановить заводские настройки частотного регулятора. Для этого используется ввод соответствующей команды или нажатие клавиши Reset. Некоторые модели преобразователей затем следует перезагрузить.
- Далее вводят все характеристики двигателя, фильтров и других вспомогательных элементов привода и осуществляют программирование частоты вращения, параметров регулирования и другие настройки. Некоторые модели частотников определяют фактические характеристики электродвигателей автоматически.
- Далее осуществляется пробный пуск привода в ручном режиме. При этом проверяют правильность направления вращения вала и работу двигателя во всем интервале регулируемых скоростей. При необходимости вносят корректировки в предварительные настройки.
- После чего производят окончательную настройку частотных преобразователей под регулируемый параметр и условия технологического процесса. Настройка преобразователей осуществляется с панели управления или с ПК. Эти операции должен производить специалист по автоматизации.
- · Далее опробуют привод в тестовом режиме и вносят изменения в настройки, после чего проверяют корректность работы привода еще раз.
Функционал, схема подключения, порядок настройки разных типов и моделей частотных регуляторов могут существенно различаться. При выполнении монтажа и программирования частотников необходимо строго следовать общим правилам по монтажу электротехнического оборудования, инструкции и алгоритму настроек, рекомендованному производителем. Вносить изменения в ПО (программное обеспечение) и схемы подключения категорически запрещено.
Внимание! Фактические характеристики электродвигателей, долго находившихся в эксплуатации или побывавших в капитальном ремонте, могут отличаться от паспортных данных. Для частотно-регулируемого привода рекомендуется использовать новые электрические машины или частотные преобразователи, определяющие фактические параметры электродвигателей автоматически.
Техника безопасности
При установке преобразователей и настройке привода обязательно соблюдать ряд общих требований:
- Все подключения необходимо выполнять при полностью отключенном напряжении питания. Перед их выполнением необходимо проверить, что автоматический выключатель или другой коммутирующий аппарат на вводе отключен.
- В схеме питания и управления электродвигателем имеются индуктивные и емкостные элементы, которые способствуют сохранению напряжения в цепях привода после отключения питания. При монтаже и настройке преобразователей привода до 7 кВт необходимо подождать не менее 5 минут после отключения напряжения питания, для электрооборудования более 7 кВт время ожидания составляет не меньше 15 минут.
- Преобразователь должен иметь индивидуальный заземляющий проводник, присоединенный к корпусу и к заземляющему контуру напрямую.
- Нулевой и заземляющий провод должны быть присоединены к соответствующим шинам. Использовать для заземления нулевой проводник строго запрещается.
- Долговременное отключение частотно-регулируемого привода должно осуществляться контактором или автоматическим выключателем, установленным перед частотным преобразователем. Нажатие клавиши “ OFF ” отключает двигатель, но не обесточивает электрические цепи.
- Все электрические соединения выполняются проводами и кабелями, рекомендованного производителем сечения. Нельзя применять токопроводящие изделия с меньшим диаметром жил.
- Нельзя подключать частотники по непредусмотренной производителем схеме. При некорректной работе преобразователя следует связаться со службой технической поддержки производителя или вызвать профильного специалиста.
Большинство моделей частотных регуляторов поддерживают множество режимов работы и настроек. Их можно адаптировать для использования в различных промышленных установках, комплексных системах автоматизации. Например, для синхронизации и одновременного регулирования производительности нагнетательных вентиляторов котельных, вытяжных установок систем удаления продуктов сгорания.
Подключение, тестирование и программирование частотных регуляторов должно выполняться специалистами, имеющими допуск к электрооборудованию, профильное образование и прошедшими инструктаж по ТБ.