Гидравлическое устройство грузового автомобиля

Содержание
  1. Строение автомобиля
  2. Устройство грузового автомобиля
  3. — рулевое управление (с гидроусилителем)
  4. Устройство грузового автомобиля
  5. Устройство грузового автомобиля Volvo серии FH
  6. Устройство грузового автомобиля MAN серии TGA
  7. Двигатель
  8. Устройство грузового автомобиля Scania R-серии
  9. Принцип работы гидравлики
  10. Гидравлическая система: расчет, схема, устройство. Типы гидравлических систем
  11. Сфера использования
  12. Принцип действия
  13. Устройство промышленных систем
  14. Преимущества и недостатки гидравлических систем
  15. Расчет гидравлической системы
  16. Типы гидравлических систем
  17. Классификация гидравлических машин
  18. Принцип работы и устройство гидромашин
  19. Лопастные насосы
  20. Поршневой насос
  21. Шестерные насосы
  22. Пластинчатые гидромашины
  23. Поворотный гидродвигатель
  24. Гидротурбины
  25. Осевые турбины
  26. Поворотно-лопастные турбины
  27. Радиально-осевые турбины
  28. Диагональные турбины
  29. Ковшовые гидротурбины

Строение автомобиля

Устройство грузового автомобиля

Как правило грузовой автомобиль состоит из пяти основных частей, которые перечислены ниже:

2) Шасси

3) Кузов

5) Специальное оборудование

Способы ремонта автомобиля своими руками,

как ремонтировать системы и механизмы авто

Двигатель автомобиля может работать на дизельном или бензиновом топливе в зависимости от установленного силового агрегата.

Рассмотрим к примеру автомобиль КАМАЗ. В нем установлены:

— V образный дизельный двигатель

— сцепление с специальным пневмогидравлическим усилителем и конечно же гидравлический привод

— 5ступенчатая коробка передач (КПП)

— элементами подвески в этом автомобиле выступают рессоры, полуэллиптического типа

— карданная передача ( передает крутящий момент от коробки передач к ведущим мостам автомобиля, карданная передача состоит из нескольких карданных валов)

Как устроен грузовой автомобиль?

— рулевое управление (с гидроусилителем)

Данная конструкция изначально оптимально просчитывалась и хорошо продумана, учитывает обзорность дороги, управляемость, маневренность, устойчивость автомобиля, что позволяет водителю чувствовать на дороге более уверенно и спокойно.

Устройство грузового автомобиля

В этом материале мы рассмотрим устройство грузовых автомобилей трех популярных производителей спецтехники, которые занимают первые места в рейтинге продаж в России.

Устройство грузового автомобиля Volvo серии FH

Грузовики шведской компании уверенно занимают 1 место в топе массовых продаж. С них и начнем рассматривать особенности устройства грузового автомобиля.

Источник фото: volvotrucks.ru Грузовики Volvo — лидеры продаж в России

Двигатель

Грузовики оснащаются 12-литровыми (FH12) и 16-литровыми (FH16) двигателями. Есть еще модификации, оснащенные 13-литвовым турбодизелем — FH13, встречающиеся в России крайне редко. 12-литровые рядные 24-клапанные моторы отличаются тяговитостью, умеренным расходом топлива, невысокой шумностью и вибрацией. Система впрыскивания укомплектована насос-форсунками с электронной регулировкой. Также силовой агрегат оснащен моторным тормозом, представляющим комбинацию декомпрессионного и горного тормозов.

Шасси

Шасси для тягачей представлено в 4 вариантах: сверхнизкое, высокое, среднее, низкое. Для грузовиков производитель предлагает всего три варианта высоты шасси: высокое, среднее и низкое.

Источник фото: volvotrucks.ru Устройство грузовиков Volvo FH: подвеска кабины может быть выполнена на пневмобаллонах или комбинированно

Для перевозки сыпучих грузов предпочтительны низкое или сверхнизкое шасси с пневматической подвеской. Среднее шасси отлично дополняет грузовики оснащенные пневматической или передней рессорной подвеской и с низким передним мостом. Самое высокое шасси подходит для машин, предназначенных для работы в условиях бездорожья. Также такими шасси оснащают автомобили с рессорной подвеской. Таким образом, в зависимости от вида перевозок, которыми придется заниматься, предприятие может выбрать наиболее подходящий вариант конфигурации грузовика.

Кабина

Компания предлагает несколько вариантов исполнения кабины: дневная, спальная, Globetrotter и Globetrotter XL. Подвеска кабины — на пружинах и амортизаторах. Она может быть на пневмобаллонах или комбинированная. Кстати, из-за большой массы кабины и не лучших российских дорог, как правило, после 200 тыс. км необходимо производить замену изношенных капроновых втулок передних опор кабины.

Устройство грузового автомобиля MAN серии TGA

TGA расшифровывается как «высокотехнологичное семейство» (англ. — Trucknology Generation), а индекс «А» обозначает тяжелый класс коммерческих автомобилей массой более 18 т. Грузовики данной серии выпускались до 2007 года, затем им на смену пришла линейка MAN TGX.

Источник фото: truck.av.by Серия TGA расшифровывается как «высокотехнологичное семейство»

Двигатель

Автомобили этой линейки агрегатируется шестицилиндровыми рядными дизельными моторами D2066 (рабочий объем 10,5 л), D2876 (12,8 л) и V-образным десятицилиндровым D2840 (18,3 л). Наиболее часто в Россию поставляются седельные тягачи TGA с 12-литровыми моторами. Шестицилиндровые движки оснащены четырмя клапанами на цилиндр и системой рециркуляции охлажденных газов (AGR). Глушитель оснащен дополнительным фильтром PM-Kat. Все моторы оборудованы системой впрыска дизтоплива Common Rail, обеспечивающей меньший его расход, и моторными замедлителями EVB или EVBec.

Шасси

Техника линейки TGA — это седельные тягачи и шасси. Первые — предназначены для осуществления международных перевозок с полной массой восемнадцать, двадцать четыре и двадцать шесть тонн.

Тягачи «восемнадцатитонники» — двухосные с приводом на задний мост и колесной базой (КБ) 3 900, 3 500 и 3 600 мм.

Грузовые авто с максимально допустимой массой двадцать четыре и двадцать тонн производятся с тремя осями (2 задние спарены, из них ведущей является только одна). Они могут быть с 2 вариантами КБ: с расстоянием 2 800 и 2 600 мм, управляемая ось может быть одна (колесная формула 6×2/2) или две (6×2/4).

Линейку шасси дополняют еще автомобили с четырьмя осями полной массой тридцать пять и тридцать девять тонн, с 3 или 2 управляемыми осями, КБ 2980-4 105 мм. Электронно-управляемая пневмоподвеска ECAS отвечает за регулировку высоты рамы шасси, которая может подниматься на 190 мм и опускаться на 90 мм.

Источник фото: truck.man.eu Наиболее часто в Россию поставляются седельные тягачи TGA объемом 12 литров

Кабина

Варианты кабин следующие:

  • XLX, LX, XXL — предназначены для перевозок на дальние расстояния.
  • XL, L и M — модификации кабин для развозных работ. Модель L — с 1 местом для сна и свободным пространством для хранения вещей. М — без места для отдыха. XL — с низким уровнем пола, одним спальным местом.
  • XXL — для международных перевозок. Отличается завышенной крышей, высоким ветровым стеклом, увеличенным размером спального места (всего их 2). Внешние габариты кабины: 2 280 мм длина, 2 440 мм ширина. Внутренняя высота составляет 2 100 мм.

Устройство грузового автомобиля Scania R-серии

Грузовики этой линейки серийно производятся с 2004 г. Отличительной особенностью устройства грузового автомобиля Scania этой серии стало оборудование авто системой безопасности.

Источник фото: scania-minsk.by Грузовики Scania R-серии выпускаются с 2004 года

Двигатель

К 2006 г. Scania модернизировала свои силовые агрегаты и добавила к своему «фирменному» восьмицилиндровому V-образному мотору новые модели. Ассортимент двигателей Scania включает: рядный двигатель с пятью цилиндрами, рабочий объем которого составляет 9 л, шестицилиндровый рядный силовой агрегат с объемом 12 л, шестнадцатилитровый 8-цилиндровый V-образный. У всех дизелей по 4 клапана на цилиндр, на движках установлены одинаковые индивидуальные головки цилиндров с верхним расположением распределительного вала, турбонаддув с промежуточным охлаждением воздуха.

Шасси

В R-серии грузовиков Scania представлено несколько исполнений шасси с различными колесными формулами. Внедрение 4-балонной пневмоподвески позволило в значительной мере облегчить вес рамы у авто R-серии. Модификации шасси отличаются по подвескам, идут с разными КБ, со стандартным или увеличенным клиренсом, различным оборудованием для установки спецкузовов. Модели с 2 управляемыми осями идут с колесными формулами 4х2, 6х2, 6х2/4. Колесная формула автомобилей с трехосным шасси с управляемым задним поддерживающим мостом — 6х2х4.

Источник фото: truck.av.by Устройство грузовиков Scania R: С 2006 года машины агрегатируются двигателями объемом 9, 12 и 16 л

Кабина

Кабины грузовиков серии R достаточно просторны, выпускаются в нескольких модификациях. Короткая кабина подходит для близких поездок и оставляет больше места для груза. В дневном варианте — несколько удлиненная, есть дополнительное пространство за сидениями, а также откидная полка для отдыха. Также выпускают длинные кабины для дальних перевозок в 3 вариантах, они идут со спальным местом и разной высотой крыши. Кроме того, есть еще вариант для дальних расстояний (Scania Topline), впечатляющий своими размерами.

Принцип работы гидравлики

Гидравлическая система: расчет, схема, устройство. Типы гидравлических систем

Гидравлическая система представляет собой устройство, предназначенное для преобразования небольшого усилия в значительное с использованием для передачи энергии какой-либо жидкости.

Сфера использования

  1. В промышленности. Очень часто гидравлика является элементом конструкции металлорежущих станков, оборудования, предназначенного для транспортировки продукции, ее погрузки/разгрузки и т. д.
  2. В авиакосмической отрасли. Подобные системы используются в разного рода средствах управления и шасси.
  3. В сельском хозяйстве. Именно через гидравлику обычно происходит управление навесным оборудованием тракторов и бульдозеров.
  4. В сфере грузоперевозок. В автомобилях часто устанавливается гидравлическая тормозная система.
  5. В судовом оборудовании. Гидравлика в данном случае используется в рулевом управлении, входит в конструктивную схему турбин.

Принцип действия

Работает любая гидравлическая система по принципу обычного жидкостного рычага. Подаваемая внутрь такого узла рабочая среда (в большинстве случаев масло) создает одинаковое давление во всех его точках. Это означает то, что, приложив малое усилие на маленькой площади, можно выдержать значительную нагрузку на большой.

Далее рассмотрим принцип действия подобного устройства на примере такого узла, как гидравлическая тормозная система автомобиля. Конструкция последней довольно-таки проста. Схема ее включает в себя несколько цилиндров (главный тормозной, заполненный жидкостью, и вспомогательные). Все эти элементы соединены друг с другом трубками. При нажатии водителем на педаль поршень в главном цилиндре приходит в движение. В результате жидкость начинает перемещаться по трубкам и попадает в расположенные рядом с колесами вспомогательные цилиндры. После этого и срабатывает торможение.

Устройство промышленных систем

Гидравлический тормоз автомобиля — конструкция, как видите, довольно-таки простая. В промышленных машинах и механизмах используются жидкостные устройства посложнее. Конструкция у них может быть разной (в зависимости от сферы применения). Однако принципиальная схема гидравлической системы промышленного образца всегда одинакова. Обычно в нее включаются следующие элементы:

  1. Резервуар для жидкости с горловиной и вентилятором.
  2. Фильтр грубой очистки. Этот элемент предназначен для удаления из поступающей в систему жидкости разного рода механических примесей.
  3. Насос.
  4. Система управления.
  5. Рабочий цилиндр.
  6. Два фильтра тонкой очистки (на подающей и обратной линиях).
  7. Распределительный клапан. Этот элемент конструкции предназначен для направления жидкости к цилиндру или обратно в бак.
  8. Обратный и предохранительный клапаны.

Работа гидравлической системы промышленного оборудования также основывается на принципе жидкостного рычага. Под действием силы тяжести масло в такой системе попадает в насос. Далее оно направляется к распределительному клапану, а затем — к поршню цилиндра, создавая давление. Насос в таких системах предназначен не для всасывания жидкости, а лишь для перемещения ее объема. То есть давление создается не в результате его работы, а под нагрузкой от поршня. Ниже представлена принципиальная схема гидравлической системы.

Преимущества и недостатки гидравлических систем

К достоинствам узлов, работающих по этому принципу, можно отнести:

  • Возможность перемещения грузов больших габаритов и веса с максимальной точностью.
  • Практически неограниченный диапазон скоростей.
  • Плавность работы.
  • Надежность и долгий срок службы. Все узлы такого оборудования можно легко защитить от перегрузок путем установки простых клапанов сброса давления.
  • Экономичность в работе и небольшие размеры.

Помимо достоинств, имеются у гидравлических промышленных систем, конечно же, и определенные недостатки. К таковым относят:

  • Повышенный риск возгорания при работе. Большинство жидкостей, используемых в гидравлических системах, являются горючими.
  • Чувствительность оборудования к загрязнениям.
  • Возможность протечек масла, а следовательно, и необходимость их устранения.

Расчет гидравлической системы

При проектировании подобных устройств принимается во внимание множество самых разных факторов. К таковым можно отнести, к примеру, кинематический коэффициент вязкости жидкости, ее плотность, длину трубопроводов, диаметры штоков и т. д.

Основными целями выполнения расчетов такого устройства, как гидравлическая система, чаще всего является определение:

  • Характеристик насоса.
  • Величины хода штоков.
  • Рабочего давления.
  • Гидравлических характеристик магистралей, других элементов и всей системы в целом.

Производится расчет гидравлической системы с использованием разного рода арифметических формул.

Типы гидравлических систем

Подразделяются все такие устройства на две основные группы: открытого и закрытого типа.

Открытую конструкцию имеют обычно устройства малой и средней мощности. В более сложных системах закрытого типа вместо цилиндра используется гидродвигатель. Жидкость поступает в него из насоса, а затем снова возвращается в магистраль.

Классификация гидравлических машин

Гидравлические машины классифицируют по принципу действия и внутреннему строению.

Главное разделение – насосы и гидравлические двигатели.

К насосам относятся такие группы:

  1. Объёмные – это агрегаты, рабочий процесс которых, происходит переменно. В рабочую ёмкость через входную трубу попадает жидкость. После заполнения камеры, входная труба перекрывается задвижкой и в камере нагнетается давление (поршень). Открывается выводящая труба и жидкость покидает ёмкость. Задвижка закрывается, а на входе наоборот открывается. Процесс повторяется
  2. Динамические – в этих агрегатах, рабочая часть насоса, взаимодействует с жидкостью в проточной части. Потоку придаётся дополнительная кинетическая энергия, за счёт лопастей, винтов или вихревого потока.

Гидравлические двигатели разделяются на:

  1. Активные – в этом случае, поток распределяется по нескольким каналам, через которые он с большой скоростью ударяет в определённые лопасти турбины.
  2. Реактивные – это агрегат, в котором колесо вырабатывающее энергию, находится в ёмкости с большим давление под водой.

Однако у гидравлических двигателей, большинство моделей можно использовать как насос. Следовательно, они могут разделяться на объёмные и динамические.

Принцип работы и устройство гидромашин

С развитием технологий, появляется все больше новых машин, используемых в различных отраслях промышленности.

Лопастные насосы

Этот тип гидромашин, получил огромное распространение в обеспечение населения водой. Эти насосы можно разделить на осевые и центробежные.

Если говорить о принципе действия центробежного насоса, то в этом случае жидкость будет двигаться от центра колеса к периферии под воздействием центробежных сил.

Из каких элементов состоит: основное колесо (рабочее) на котором располагаются лопасти, подвод воды и отвод, а также двигатель. Колесо состоит из двух круглых пластин, между которыми располагаются изогнутые лопасти и подвижная ось двигателя. Колесо вращается в противоположную сторону изгиба лопаток. Тем самым, двигатель с помощью него передаёт потоку механическую энергию.

Осевой насос подразумевает движение жидкости только вдоль подвижной оси, на которой могут располагаться несколько рабочих колёс с лопастями. Они расположены так, чтобы вода поднималась вокруг оси до нужно отметки. В некоторых моделях таких насосов, можно регулировать положение лопастей.

Поршневой насос

Принцип работы заключается в вытеснение жидкости находящийся в рабочей камере, с помощью подвижных элементов насоса. Рабочая камера представляет собой емкость, в которой есть вход и выход для жидкости. Подвижные элементы бывают трёх видов: диафрагма, плунжер и поршень.

Устройство поршневого насоса: шатун, кривошип, поршень, цилиндр (корпус в котором двигается вытесняющая поверхность), пружинные клапаны (впускной и выпускной), ёмкость для жидкости.

Именно поршневые модели являются самыми распространёнными из вытеснителей. В них может присутствовать один, два или несколько поршней.

Плунжерные варианты используются реже вследствие своей дороговизны (это связанно с высокой точностью изготовления движущихся элементов). Однако их преимуществом перед поршневыми, является возможность получения высокого давления.

Состоит плунжерный насос из: ведущий вал, кулачок, плунжер, корпус (цилиндр), пружина (плунжер двигается вперёд с помощью кулачка, а обратно под воздействием пружины).

Самый постой в изготовление, вследствие этого дешёвый вариант – Диафрагменный насос. Из-за простой конструкции, этот вариант не подходит для создания большого давления. Прочность диафрагмы не предназначена для высоких нагрузок. Он состоит из: шток, гибкая диафрагма, корпус, два клапана (впускной и выпускной).

Шестерные насосы

Это машины роторного типа. Они получили большую популярность среди нерегулируемых насосов. Такой агрегат состоит из: две одинаковые шестерни (зацепленные друг за друга), камера п-образной формы (в ней и находятся шестерни), разделитель.

Принцип работы: после запуска двигателя, из всасывающего отверстия, вода попадает в зону между зубьями. Дальнейшее вращение шестерней, приводит к передвижению жидкости в нагнетательную плоскость. В месте зацепления шестерен, жидкость вытесняется и под воздействием давления попадает к дальнейшим рабочим частям насоса.

Преимущества таких гидромашин:

  • простая конструкция;
  • низкая стоимость;
  • высокий показатель надёжности;
  • высокая частота вращения.
  • фиксированный рабочий объём, без возможности регулирования;
  • конструкция не предназначена для работы с высоким давлением;
  • неравномерная подача жидкости, если брать в пример пластинчатые гидромашины.

Пластинчатые гидромашины

Это не то же самое, что и лопастные машины (динамический вид). Рабочими поверхностями здесь являются шиберы (пластины). Они относятся к объёмному виду. Подвижным элементом является ротор. Он совершает вращательные движения. А шиберы двигаются по возвратно-поступательной траектории внутри ротора.

Пластинчатые гидромашины подразделяются на две группы: однократные и двукратные. Первый вариант может быть регулируемым, второй нерегулируемый.

Состоят такие агрегаты из: шиберы с пружинами (от двух и более), рабочие камеры (условно разделяются пластинами), ротор.

Рабочий процесс: после запуска двигателя, ротор начинает движение. Шиберы под воздействием пружин, плотно соприкасаются со стенками статора и разделяют общую рабочую емкость на две герметичные камеры (если пластине две). Под воздействием всасывания, емкости заполняются жидкостью и в ходе вращения, передают её в выходное отверстие.

Преимущества пластинчатых гидромашин:

  • тихий рабочей процесс;
  • возможность регулировки агрегатов однократного действия.
  • сложная конструкция;
  • создание низкого давления при работе;
  • нарушение качества работы при низких температурах.

Поворотный гидродвигатель

Особенностью таких агрегатов, является ограничение угла рабочего вала. Они широко применяются в создание рулевого управления сельскохозяйственных машин. Угол оборота, напрямую зависит от количества пластин. Если она одна, он будет составлять примерно 270 градусов, если две – 150, три – 70.

Чтобы регулировать работу вала, потребуется специальный гидрораспределитель. Этот вид агрегатов не подходит для работы с большим давлением жидкости.

Гидротурбины

В этих гидромашинах, механическая энергия протекающей жидкости, передаётся лопастям рабочего колеса. Самый масштабный и яркий пример использования гидротурбин, это гидроэлектростанции. Они разделяются на реактивные и активные.

Состоит такой агрегат из рабочего колеса, подводящего аппарата или сопла (зависит от типа турбины).

По внутреннему строению их можно разделить на ковшовые, диагональные, осевые и радиально-осевые.

Предшественником гидротурбин, можно назвать водяное колесо, которое приводилось в движение с помощью мощного потока воды (их устанавливали на реках или больших ручьях).

Осевые турбины

Самые быстроходные из всех видов турбин. Рабочее колесо по форме напоминает вентилятор с большими лопастями, которые могут быть как фиксированными, так и подвижными. В таких турбинах обязательно устанавливается подающий аппарат. Он отвечает за КПД агрегата, а также в нужным момент полностью перекрывает подступ воды к лопастям. Также обязательным элементом, являются трубы для откачивания воды.

Поворотно-лопастные турбины

Осевой вид турбины, с изменяющими своё положение лопастями. Всего их в такой конструкции может быть 8 штук. Сама конструкция напоминает гребной винт. Изменение положения лопастей, даёт возможность сохранять высокий показатель КПД при уменьшении и незначительном увеличение силы напора. Если лопасти зафиксированы, этот вид будет называться пропеллерным. Он самый дешёвый и самый ограниченный в возможностях (может работать только в одной силе потока).

Самым редким вариантом поворотно-лопастных турбин, являются двухперовые. Их главное отличие от других видов, это разделение лопасти на два пера. Такие модели активно используют за границей.

Радиально-осевые турбины

Его главной особенностью является простота конструкции и невысокая цена. На самых больших гидроэлектростанциях, установлены именно такие гидротурбины. Им принадлежит рекорд по выдаваемой мощности.

В этом виде турбин жидкость поступает на рабочее колесо с наружной стороны. Проходя по радиусу, минуя множество каналов определённой формы, она достигает центра и заставляет ротор раскручиваться. Для того, чтобы жидкость поступала равномерно и правильно, колесо окружается спиральной камерой, за которой находится направляющий аппарат. Его лопасти располагаются под определёнными углами, для увеличения КПД турбины. Когда вода отдала свою механическую энергию рабочему колесу, она откачивается с помощью специальных труб.

Главным минусом этого вида турбин, являются фиксированные лопасти. Тем самым, радиально-осевая турбина может показать высокой значение КПД, только при определённых напорах. Если использовать Радиально-осевую турбину при напоре в 700 м, её размер должен быть огромен, вследствие чего, она сильно проигрывает ковшовым турбинам. Максимально допустимой силой напора, для достижения высокого показателя КПД, будет отметка в 300м.

Диагональные турбины

Этот вид вобрал в себя лучшие качества двух предыдущих. Диагональные турбины, являются новой разработкой, по сравнению с другими. Главной особенностью этого вида, является гол наклона лопастей (30-60 градусов). И в это же время, лопасти можно регулировать. Вследствие этого, диагональные турбины подходят для обширного диапазона мощностей потока, сохраняя высокий показатель КПД.

Однако такая универсальность и производительность дорого обходится. Это связанно со сложностью конструкции.

Есть диагональные турбины с фиксированными лопастями. Они распространены на небольших ГЭС.

Ковшовые гидротурбины

Этот вид предназначен для работы с большими напорами. Ковшовые турбины относятся к активному типу в отличие от остальных. Рабочее колесо приводится в действие отдельными струями воды, попадающими на ковши колеса. Сами струи формируются с помощью направленных отверстий или сопл. Их может быть до шести штук. Рабочее колесо состоит из диска, с закреплёнными на нём ковшами.

Ковшовые гидротурбины разделяются на вертикальные и горизонтальные. Второй вариант используется на средних гидроэлектростанциях.

Читайте также:  Ремонт двигателей японских мотоциклов
Оцените статью