Гарькавый, А.А. Сборка авиационных двигателей
Букинистическое издание (б/у)
Краткое содержание: Понятие о сборке изделий; Этапы выполнения сборочной операции; Точность сборки и методы ее достижения; Подготовка сборочного процесса; Осуществление сборочного процесса; Контроль сборочного процесса; Узловая сборка ГТД; Общая сборка и переборка авиационных двигателей; Роль сборки в формировании и повышении качества ГТД.
Другие книги
В помощь радиолюбителю. Выпуск 96
Крючков, А.А. Малогабаритный транзисторный телевизор «Спутник»
Тычино, К.К. Цифровые частотометры на транзисторах
Иващенко, И.А. Проектирование технологических процессов производства двигателей летательных аппаратов
Шевцов, А.Ф. Юный радиолюбитель
Розоринов, Г.Н.; Свяченый, В.Д. Устройства цифровой магнитной звукозаписи
Дзюбин, И. Путешествие в страну лилипутов
Хмарцев, В.С. Стереофонический приемник высшего класса
В помощь радиолюбителю. Выпуск 42
Фролов, В.В. Язык радиосхем
Гольдин, И.; Прокофьев, Ю. Основы технической механики: Учебное пособие для подготовки рабочих
Почепа, А.М.; Фомин, Н.Ф. Эксплуатация и ремонт цветных телевизоров
Началась сборка первых адаптивных реактивных двигателей
Рендер адаптивного двигателя XA100
Американские компании General Electric и Pratt & Whitney приступили к сборке первых опытных образцов адаптивных турбореактивных авиационных двигателей, которые в будущем будут устанавливаться на самые разные классы летательных аппаратов: транспортные самолеты, истребители, самолеты-заправщики, бомбардировщики. Как пишет Aviation Week, обе силовые установки создаются в габаритных размерах турбореактивного двигателя с форсажной камерой F135, силовой установки истребителя F-35 Lightning II.
Современные турбореактивные двигатели состоят из двух частей. Одна из них — внутренний контур, состоящий из газогенератора и сопловой части. В состав газогенератора входят компрессоры, камера сгорания и турбина высокого давления. В полете воздух затягивается и немного сжимается вентилятором — самым большим и самым первым винтом по ходу полета. Затем часть этого воздуха поступает в компрессор и сжимается еще сильнее, после чего попадает в камеру сгорания, где смешивается с топливом.
После сгорания топливной смеси газы из камеры сгорания попадают на турбину высокого давления и вращают ее, а та, в свою очередь, приводит в движение компрессор. После турбины высокого давления газы попадают на турбину низкого давления, приводящую вентилятор. После турбин газовый поток попадает в сопло и истекает из него, формируя часть тяги двигателя. Вторая часть двигателя — внешний контур — представляет собой направляющий аппарат, воздуховод и, в некоторых случаях, собственное кольцевое сопло.
Во время полета часть немного сжатого вентилятором воздуха, не попавшая во внутренний контур, попадает в направляющий аппарат, где тормозится. Из-за торможения давление в воздушном потоке повышается. После этого сжатый воздух поступает в воздуховод, а затем — в сопло и формирует остаток тяги. В современных турбовентиляторных двигателях гражданских самолетов основная часть тяги — до 80 процентов — формируется вентилятором.
В двигателях истребителей большая часть проходящего через двигатель воздушного потока проходит через внутренний контур. Такое решение позволяет несколько повысить «отзывчивость» двигателя на управление, а также уменьшить его поперечные размеры, благодаря чему силовая установка способна обеспечивать сверхзвуковую скорость полета.
В двигателях с форсажной камерой присутствует дополнительная зона, расположенная за турбинами и перед соплом. В полете в эту камеру впрыскивается дополнительное топливо, которое самовоспламеняется от раскаленных отработавших газов, все еще имеющих высокое содержание кислорода. Последний и выступает окислителем для топлива в форсажной камере. Такое конструктивное решение позволяет существенно повысить тягу двигателя, но приводит к быстрому расходу топлива.
Проект адаптивного турбореактивного двигателя предусматривает добавление в конструкцию силовой установки третьего внешнего воздушного контура. При полете на дозвуковой скорости третий воздушный контур будет открыт, и двигатель будет работать практически как турбовентиляторная силовая установка с большой степенью двухконтурности. В таком режиме силовая установка будет иметь несколько бо́льшую тягу и существенно меньшее потребление топлива.
По предварительной оценке разработчиков, топливная экономичность адаптивного двигателя по сравнению с F135 будет выше на 25 процентов, диапазон рабочих режимов — на 30 процентов, а тяга — на 5-10 процентов.
Двигатели, сборкой которых занялись компании General Electric и Pratt & Whitney получили обозначение XA100 и XA101. Первые опытные образцы этих силовых установок смогут развивать тягу до 200 килоньютонов. Для сравнения, максимальная тяга двигателя F135 составляет 125 килоньютонов и 191 килоньютон в режиме форсажа. Процесс сборки и испытания отдельных узлов перспективных двигателей должен завершиться в конце 2019 года, а с 2020 года разработчики приступят к испытаниям силовых установок в сборе.
В конце 2015 года американская компания Northrop Grumman приступила к исследованиям, которые в перспективе позволят значительно снизить температуру боевых лазеров и их систем энергоснабжения, а также бортового оборудования и обычного вооружения перспективных боевых самолетов. В качестве одного из вариантов исследователи рассматривают возможность создания теплового аккумулятора. Тепло от боевых лазеров и систем подачи энергии будет накапливаться в нем, а при достижении полной емкости аккумулятора оно будет отводиться от него в рассеивающий контур.
Рассеивающий контур, помимо прочего, будет включать в себя теплоотводящие элементы в третьем контуре адаптивного двигателя, через который будет проходить воздух во время полета. По предварительной оценке, многоступенчатая система отвода тепла позволит добиться по меньшей мере неувеличения тепловой заметности боевого самолета при использовании большого количества систем — источников тепла.
Крейсерский полет
Как сделать наиболее экономичным весь полет, включая взлет и посадку, увеличив при этом ресурс силовой установки крылатой машины? Такую задачу ставят перед собой российские конструкторы.
Гибридизация
Понятие гибридной силовой установки (ГСУ) получило активное развитие благодаря автопрому, где уже используется в качестве двигателя некий симбиоз тепловых и электрических машин. Суть явления в том, что автомобиль приводится в движение благодаря их совместной работе.
Пришло время ГСУ и для авиационной отрасли. Как отмечают ее представители, КПД газотурбинных двигателей, которые и отвечают за мощность силовых установок самолетов и вертолетов, обеспечивая привод винтов, близок к своему пределу. В качестве дальнейших перспектив специалисты предлагают новую технологию — гибридную силовую установку на основе газотурбинного привода и электромотора. В этом случае электрический двигатель играет вспомогательную роль.
Как это происходит? Известно, что на взлете самолета все его системы работают с повышенными нагрузками. Затем движение выравнивается и приобретает стабильный характер, комфортный и для пассажиров, которым в это время позволяется вставать с кресел, и, с точки зрения технических расходов, для самой машины, идущей на одной скорости. Такой режим полета называется крейсерским. И он единственный наиболее комфортный для летательного аппарата. Применение гибридного принципа позволит обеспечивать работу газотурбинного двигателя на максимально эффективном для него уровне в течение всего полета. Разработать новую конструкцию планируется в Петербурге на площадке «ОДК-Климов», входящего в госкорпорацию «Ростех».
В чем преимущества гибридного самолета или вертолета? В том, что замена классических силовых установок на ГСУ позволит значительно снизить потребление энергии, уровень шумов и количество выбросов в атмосферу. Экономия топлива, увеличение ресурса, когда материальная часть изнашивается меньше, — вот те показатели, к которым стремятся разработчики. Недостаток мощности газотурбинного мотора компенсируется электродвигателем, объясняет заместитель генерального конструктора «ОДК-Климов» Ирина Сморчкова.
Как отмечает проректор Санкт-Петербургского Политехнического университета доктор технических наук Виталий Сергеев, авиационному двигателю важно работать в режиме, близком к «номиналу». И электромотор может позволить приблизить работу газотурбинной установки к оптимальному режиму.
Будущее за теми, кто располагает подобными преимуществами. В частности, забота об экологии — один из важнейших поводов для конкурентной борьбы на авиационном рынке, подчеркивает заместитель директора программы разработки перспективного вертолетного двигателя «ОДК-Климов» Михаил Шемет. Например, на «рулежке» в аэропорту можно использовать чисто электрическую тягу, когда нет никаких выбросов.
Подпитка электроэнергией решает многое, и проектирование электрических машин под авиационные нужды началось. Но когда конструкторы пытаются решить задачу повышения эффективности авиалайнеров с помощью энергии аккумуляторов, вес батарей неизменно сводит все усилия разработчиков на нет. Ведь в авиации жесткие весовые ограничения.
Искусственный интеллект
В реальности существуют лишь небольшие сверхлегкие самолеты с несколькими посадочными местами, работающие исключительно на электрической тяге. Как рассказал директор Центрального института авиационного моторостроения Михаил Гордин, пока в мире нет ни одного электрического коммерческого самолета, способного перевозить пассажиров или грузы. Между тем перед отечественными разработчиками ставится задача сформировать концепт ГСУ для легкой авиации, используемой, скажем, в гражданских целях на местных авиалиниях дальностью до 250 км или для решения военных задач. И здесь уже одной электротягой не обойтись. Слишком тяжелые получатся аккумуляторы. В этом смысле энергетика электричества на порядок уступает энергетике керосина. Бак с керосином и газотурбинный двигатель значительно легче, чем электрический с батареями. Поэтому гибридная технология становится оптимальной комбинацией для легких вертолетов и самолетов. Примечательно, что для каждого конкретного летательного аппарата она определяется отдельно, позволяя найти лучший вариант с увеличением эксплуатационных ресурсов, уменьшением расхода топлива и сокращением выбросов.
Повысить экономичность современных двигателей станет возможным и за счет внедрения искусственного интеллекта, задача которого — управление системами ГСУ, в том числе подачей топлива и перераспределением энергии, считает профессор Виталий Сергеев. Что, безусловно, будет способствовать надежности эксплуатации машины.
Применение искусственного интеллекта выводит гибридную технологию на принципиально новый уровень технического прогресса. И заинтересованность государства в инновационном развитии могла бы стать поддержкой в начинании. Сейчас российские специалисты приступили к научно-исследовательским работам по созданию гибридной силовой установки в инициативном порядке. Включение этой инициативы в одну из госпрограмм стало бы логичным продолжением экономической политики, необходимой для выхода новой отечественной продукции на международный рынок и укрепления обороноспособности страны.
Ближайшая задача — объединить все научно-производственные силы для разработки конкурентоспособного продукта, собрав вместе не только представителей авиапрома, но и всех смежников, включая электронную и энергетическую промышленность, с участием министерства обороны. Интегратором и локомотивом в этой работе станет «ОДК-Климов». Для подготовки технических решений предстоит определить конкретный объект применения установки нового поколения, что особенно важно для создания ее конструкции.
Зачем нужен такой летательный аппарат, сверхнасыщенный суперсистемами? Прежде всего, для совершенствования способов диагностики воздушного судна, возможности получать онлайн-информацию прямо во время полета по всем необходимым характеристикам. Экспресс-анализ позволит, не дожидаясь авиационного происшествия, оперативно устранять проблему, проведя локальный ремонт. Предсказательная диагностика станет гарантией безопасности полета.
По мнению экспертов, ГСУ будет востребована в различных отраслях. Ее производственная платформа может быть разной, начиная с беспилотников, заканчивая бронетехникой и аэротакси. Гибридизация, считают разработчики, дает возможность по-другому подойти к конструированию самого летательного аппарата, открывая широкие и порой неожиданные перспективы.
Как производят авиадвигатели
Основными видами деятельности предприятия являются разработка, производство, сервисное обслуживание и ремонт турбореактивных авиационных двигателей, производство и ремонт узлов вертолетной техники, выпуск оборудования для нефтегазовой промышленности.
ОАО «Уфимское моторостроительное производственное объединение» — крупнейший разработчик и производитель авиационных двигателей в России . Здесь работают более 20 тысяч человек. УМПО входит в состав Объединенной двигателестроительной корпорации.
УМПО серийно выпускает турбореактивные двигатели АЛ-41Ф-1С для самолетов Су-35С, двигатели АЛ-31Ф и АЛ-31ФП для семейств Су-27 и Су-30, отдельные узлы для вертолетов «Ка» и «Ми», газотурбинные приводы АЛ-31СТ для газоперекачивающих станций ОАО «Газпром».
Под руководством объединения ведется разработка перспективного двигателя для истребителя пятого поколения ПАК ФА (перспективный авиационный комплекс фронтовой авиации, Т-50). УМПО участвует в кооперации по производству двигателя ПД-14 для новейшего российского пассажирского самолёта МС-21, в программе производства вертолётных двигателей ВК-2500, в реконфигурации производства двигателей типа РД для самолётов МиГ.
1. Сварка в обитаемой камере «Атмосфера-24»
Интереснейшим этапом производства двигателя является аргонодуговая сварка наиболее ответственных узлов в обитаемой камере, обеспечивающая полную герметичность и аккуратность сварного шва. Специально для УМПО ленинградским институтом «Прометей» в 1981 году создан один из крупнейших в России участок сварки, состоящий из двух установок «Атмосфера-24».
2. По санитарным нормам рабочий может проводить в камере не более 4,5 часов в день. С утра — проверка костюмов, медицинский контроль, и только после этого можно приступать к сварке.
3. Сварщики отправляются в «Атмосферу-24» в легких космических скафандрах. Через первые двери шлюза они проходят в камеру, им прикрепляют шланги с воздухом, закрывают двери и подают внутрь камеры аргон. После того, как он вытеснит воздух, сварщики открывают вторую дверь, заходят в камеру и начинают работать.
4. В безокислительной среде чистого аргона начинается сварка конструкций из титана.
5. Контролируемый состав примесей в аргоне позволяет получить качественные швы и повысить усталостную прочность сварных конструкций, обеспечивает возможность подварки в самых труднодоступных местах за счет применения сварочных горелок без использования защитного сопла.
6. В полном облачении сварщик, действительно, похож на космонавта. Чтобы получить допуск к работе в обитаемой камере, рабочие проходят курс обучения, вначале они в полной экипировке тренируются на воздухе. Обычно двух недель достаточно, чтобы понять, годится человек для такой работы или нет — нагрузки выдерживает далеко не каждый.
7. Всегда на связи со сварщиками — специалист, следящий за происходящим с пульта управления.
8. Оператор управляет сварочным током, следит за системой газоанализа и общим состоянием камеры и работника.
9. Ни один другой способ ручной сварки не даёт такого результата, как сварка в обитаемой камере. Качество шва говорит само за себя.
10. Электронно-лучевая сварка.
Электронно-лучевая сварка в вакууме — полностью автоматизированный процесс. В УМПО он осуществляется на установках Ebokam. Одновременно сваривается два-три шва, причём с минимальным уровнем деформации и изменением геометрии детали.
11. Один специалист работает одновременно на нескольких установках электронно-лучевой сварки.
12. Детали камеры сгорания, поворотного сопла и блоков сопловых лопаток требуют нанесения теплозащитных покрытий плазменным способом. Для этих целей используется робототехнический комплекс ТСЗП-MF-P-1000.
13. Инструментальное производство
В составе УМПО 5 инструментальных цехов общей численностью около 2500 человек. Они занимаются изготовлением технологического оснащения. Здесь создают станочные приспособления, штампы для горячей и холодной обработки металлов, режущий инструмент, мерительный инструмент, пресс-формы для литья цветных и черных сплавов.
14. Производство пресс-форм для лопаточного литья осуществляется на станках с ЧПУ.
15. Сейчас для создания пресс-форм нужно всего два-три месяца, а раньше этот процесс занимал полгода и дольше.
16. Автоматизированное средство измерения улавливает мельчайшие отклонения от нормы. Детали современного двигателя и инструмента должны быть изготовлены с предельно точным соблюдением всех размеров.
17. Вакуумная цементация.
Автоматизация процессов всегда предполагает уменьшение затрат и повышение качества выполняемых работ. Это относится и к вакуумной цементации. Для цементации – насыщения поверхности деталей углеродом и повышения их прочности – используются вакуумные печи Ipsen.
18. Для обслуживания печи достаточно одного работника. Детали проходят химико-термическую обработку в течение нескольких часов, после чего становятся идеально прочными. Специалисты УМПО создали собственную программу, которая позволяет осуществлять цементирование с повышенной точностью.
19. Литейное производство
Производство в литейном цехе начинается с изготовления моделей. Из специальной массы прессуются модели для деталей разных размеров и конфигураций с последующей ручной отделкой.
20. На участке изготовления выплавляемых моделей работают преимущественно женщины.
21. Облицовка модельных блоков и получение керамических форм — важная часть технологического процесса литейного цеха.
22. Перед заливкой керамические формы прокаливаются в печах.
23. Керамическая форма прокалена – далее её ждёт заливка сплавом.
24. Так выглядит залитая сплавом керамическая форма.
25. «На вес золота» – это о лопатке с монокристаллической структурой. Технология производства такой лопатки сложная, но и работает эта дорогая во всех отношениях деталь гораздо дольше. Каждая лопатка «выращивается» с использованием специальной затравки из никеле-вольфрамового сплава.
26. Участок обработки полой широкохордной вентиляторной лопатки
Для производства полых широкохордных вентиляторных лопаток двигателя
ПД-14 — движущей установки перспективного гражданского самолёта МС-21 –
создан специальный участок, где осуществляется вырезка и механическая обработка заготовок из титановых плит, окончательная механическая обработка замка и профиля пера лопатки, включая его механическую шлифовку и полировку.
27. На четырёхкоординатном горизонтальном обрабатывающем центре внедрена технология окончательной обработки торца пера лопатки на приспособлении, спроектированном и изготовленном в УМПО, – ноу-хау предприятия.
28. Комплекс производства роторов турбины и компрессора (КПРТК) — это локализация имеющихся мощностей для создания основных составляющих элементов реактивного привода.
29. Сборка роторов турбины — трудоёмкий процесс, требующий особенной квалификации исполнителей. Высокая точность обработки соединения «вал-диск-носок» – гарантия долгосрочной и надёжной работы двигателя.
30. Многоступенчатый ротор собирается в единое целое именно в КПРТК.
31. Балансировку ротора осуществляют представители уникальной профессии, которой в полной мере можно овладеть только в заводских стенах.
32. Производство трубопроводов и трубок
Чтобы все агрегаты двигателя слаженно функционировали — компрессор нагнетал, турбина крутилась, сопло прикрывалось или открывалось, нужно подавать им команды. «Кровеносными сосудами» сердца самолёта считаются трубопроводы — именно по ним передаётся самая разная информация. В УМПО есть цех, который специализируется на изготовлении этих «сосудов» – разнокалиберных трубопроводов и трубок.
33. На мини-заводе по производству трубок требуется ювелирная ручная работа — некоторые детали являются настоящими рукотворными произведениями искусства.
34. Многие операции по трубогибу выполняет и станок с числовым программным управлением Bend Master 42 MRV. Он гнёт трубки из титана и нержавеющей стали. Сначала определяют геометрию трубы по бесконтактной технологии с помощью эталона. Полученные данные отправляют на станок, который производит предварительное сгибание, или на заводском языке — гиб. После производится корректировка и окончательный гиб трубки.
35. Так выглядят трубки уже в составе готового двигателя — они оплетают его, как паутина, и каждая выполняет свою задачу.
36. Окончательная сборка.
В сборочном цехе отдельные детали и узлы становятся целым двигателем. Здесь трудятся слесари механосборочных работ высочайшей квалификации.
37. Собранные на разных участках цеха крупные модули стыкуются сборщиками в единое целое.
38. Конечным этапом сборки является установка редукторов с топливно-регулирующими агрегатами, коммуникаций и электрооборудования.
39. Производится обязательная проверка на соосность (для исключения возможной вибрации), центровка, так как все детали поставляются из разных цехов.
40. После предъявительских испытаний двигатель возвращается в сборочный цех на разборку, промывку и дефектацию. Сначала изделие разбирают и промывают бензином. Затем — внешний осмотр, замеры, специальные методы контроля. Часть деталей и сборочных единиц направляется для такого же осмотра в цехи-изготовители. Потом двигатель собирают вновь – на приёмо-сдаточные испытания.
41. Слесарь-сборщик собирает крупный модуль.
42. Слесари МСР выполняют сборку величайшего творения инженерной мысли XX века — турбореактивного двигателя – вручную, строго сверяясь с технологией.
43. Управление технического контроля отвечает за безупречное качество всей продукции. Контролёры работают на всех участках, в том числе — и в сборочном цехе.
44. На отдельном участке собирают поворотное реактивное сопло (ПРС) — важный элемент конструкции, отличающий двигатель АЛ-31ФП от его предшественника АЛ-31Ф.
45. Ресурс работы ПРС — 500 часов, а двигателя — 1000, поэтому сопел нужно делать в два раза больше.
46. На специальном мини-стенде проверяют работу сопла и его отдельных частей.
47. Двигатель, оснащённый ПРС, обеспечивает самолёту большую манёвренность. Само по себе сопло выглядит довольно внушительно.
48. В сборочном цехе имеется участок, где выставлены эталонные образцы двигателей, которые изготавливались и изготавливаются последние 20-25 лет.
49. Испытания двигателей.
Испытание авиационного двигателя – завершающий и очень ответственный этап в технологической цепочке. В специализированном цехе осуществляются предъявительские и приёмо-сдаточные испытания на стендах, оснащённых современными автоматизированными системами управления технологическими процессами.
50. В ходе испытаний двигателя используется автоматизированная информационно-измерительная система, состоящая из трех компьютеров, объединенных в одну локальную сеть. Испытатели контролируют параметры двигателя и стендовых систем исключительно по показаниям компьютера. В режиме реального времени производится обработка результатов испытания. Вся информация о проведенных испытаниях хранится в компьютерной базе данных.
51. Собранный двигатель проходит испытания согласно технологии. Процесс может занимать несколько суток, после чего двигатель разбирают, промывают, дефектируют.
52. Вся информация о проведённых испытаниях обрабатывается и выдаётся в виде протоколов, графиков, таблиц, как в электронном виде, так и на бумажном носителе.
54. Внешний вид испытательного цеха: когда-то гул испытаний будил всю округу, теперь наружу не проникает ни один звук.
55. Цех № 40 — место, откуда вся продукция УМПО отправляется заказчику. Но не только — здесь осуществляется окончательная приёмка изделий, агрегатов, входной контроль, консервация, упаковка.
56. Двигатель АЛ-31Ф отправляется на упаковку.
57. Двигатель ожидает аккуратное обёртывание в слои упаковочной бумаги и полиэтилена, но это не всё.
58. Двигатели помещаются в спроектированную для них специальную тару, которая маркирована в зависимости от типа изделия. После упаковки идёт комплектация сопроводительной технической документацией: паспортами, формулярами и пр.
59. Двигатель в действии!
Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите на адрес (shauey@yandex.ru) и мы сделаем самый лучший репортаж, который увидят тысячи читателей сайта Как это сделано
Отдельные фото из моих репортажей можно смотреть в инстаграме инстаграме. Жмите на ссылки, подписывайтесь и комментируйте, если вопросы по делу, я всегда отвечаю.
Также на ютюбе выходят мои интереснейшие ролики, поддержите его подпиской, кликнув по этой ссылке – Как это сделано или по этой картинке. Спасибо всем подписавшимся!