Электрооборудование двигателей внутреннего сгорания
Схемы и конструкция электрооборудования бензиновых и дизельных двигателей
Наши дополнительныесервисы и сайты:
e-mail:
office@matrixplus.ru tender@matrixplus.ru
icq:
613603564
skype:
matrixplus2012
телефон
+79173107414 +79173107418
г. С аратов
Статистика
Принципиальная схема электрооборудования карбюраторного двигателя
Электрическая энергия в карбюраторном двигателе внутреннего сгорания широко применяется для различных целей: воспламенения рабочей смеси в цилиндрах двигателя, вращения коленчатого вала двигателя при пуске, питания вспомогательного оборудования, пуска двигателя с помощью стартера.
Система электрооборудования карбюраторного двигателя состоит из источников тока (аккумуляторная батарея и генератор) и потребителей тока (пусковое устройство, приборы зажигания и распределительная аппаратура).
Соединение источников тока с потребителями обычно осуществляется по однопроводной системе соединений, при которой источник тока и потребитель соединены одним проводом, а вторым проводом является корпус двигателя, так называемая масса.
Обычно с массой соединен минусовый зажим аккумуляторной батареи и генератора. Однако имеются также схемы, в которых с массой соединены положительные зажимы аккумуляторной батареи и генератора.
В основном электрооборудование карбюраторных двигателей рассчитано на номинальное напряжение 12 в с использованием постоянного тока. Значительно реже применяется электрооборудование, работающее при напряжении 6 и 24 е. Применение системы электрооборудования двигателей с напряжением 12 в по сравнению с напряжением 6 в имеет некоторые преимущества: облегчает пуск двигателей, увеличивает срок службы приборов зажигания, уменьшает чувствительность к нарушению контактных соединений в электрических цепях и сокращает потребление меди для проводов.
На рис. 1 изображена принципиальная схема электрооборудования карбюраторного двигателя. Источники тока — аккумуляторная батарея 1 и генератор 7, а также все потребители включены параллельно, но питание всех потребителей может происходить только от одного из источников тока.
При работе двигателя с малым числом оборотов потребители питаются от аккумуляторной батареи, так как генератор не развивает достаточной электродвижущей силы (э. д. е.). С увеличением числа оборотов наступает момент, когда э. д. с. генератора превысит э. д. с. батареи, и генератор включится в цепь. В этом случае ток начнет поступать от генератора в аккумуляторную батарею.
Во избежание прохождения обратного тока из батареи в генератор при уменьшении его э. д. с. между ними устанавливают автоматический выключатель — реле обратного тока.
Для того чтобы напряжение генератора сохранялось постоянным независимо от числа оборотов двигателя, генератор включается совместно с регулятором напряжения. От перегрузки генератор защищен ограничителем тока. Реле обратного тока, реле напряжения и ограничитель тока нагрузки генератора расположены в общем корпусе и называются реле-регулятором.
Система зажигания, у которой в качестве источников тока используются аккумуляторная батарея и генератор с реле-регулятором 6, называется батарейной системой зажигания.
Батарейная система зажигания состоит из катушки зажигания 5, свечей зажигания 10, прерывателя 8 и распределителя 9. Ток высокого напряжения получается в катушке зажигания путем превращения тока низкого напряжения, поступающего из аккумуляторной батареи или генератора. Превращение постоянного тока низкого напряжения в ток высокого напряжения осуществляется при размыкании цепи низкого напряжения специальным прибором — прерывателем.
Распределитель служит для подведения в требуемой последовательности тока высокого напряжения к свечам отдельных цилиндров двигателя.
Прерыватель с распределителем объединены в один прибор, называемый распределителем.
Стартер 2 предназначен для пуска двигателя. Он представляет собой электродвигатель постоянного тока с последовательным возбуждением и с устройством для сцепления якоря с маховиком двигателя в период пуска.
Контроль за режимом зарядки аккумуляторной батареи от генератора осуществляется по амперметру 3. Ключ 4 предназначен для включения системы зажигания.
Из всех потребителей тока в электрооборудовании карбюраторных двигателей наибольшую мощность потребляет стартер. Его пусковой ток может достигать 500-600 а при напряжении 12 в и 1000-1200 а и более при напряжении 24 в.
Система батарейного зажигания при своей работе потребляет мощность в несколько десятков ватт.
Кроме рассмотренной системы батарейного зажигания, у карбюраторных двигателей может применяться также система зажигания от магнето. В этом случае надобность в аккумуляторной батарее как источника тока отпадает.
форсунок в ультразвуковых ваннах и на стендах
Дезинфицирующие средства
широкого применения для дезинфекции на объектах железнодорожного транспорта, пищевой промышленности, ЛПУ, ветеринарного надзора
Моющие средства
для железнодорожного транспорта, сертифицированные ВНИИЖТ- «Фаворит К» и «Фаворит Щ», внутренняя и наружная замывка вагонов.
Подключение электродвигателя
Время на чтение:
В промышленности наибольшее распространение получили трехфазные асинхронные двигатели. Такие привода обладают массой достоинств, как, например, жесткая характеристика. Это выражается в том, что при увеличении нагрузки и снижении оборотов крутящий момент резко возрастает. Схема подключения трехфазного асинхронного двигателя имеет свои особенности, которые необходимо учитывать при монтаже и ремонте устройств.
Условия для подключения электродвигателя
Основным условием для нормальной работы трехфазных двигателей является стабильность напряжения и тока в каждой из фаз электрической сети. Обрыв хотя бы одной фазы приведет к тому, что двигатель потеряет значительную часть мощности и при нагрузке на валу свыше 50 % нормативной остановится и выйдет из строя. Пуск на двух фазах возможен только при полном отсутствии нагрузки и только в то время, когда ротор сохраняет хотя бы небольшую угловую скорость.
Асинхронный двигатель
К сведению! В момент пуска асинхронный двигатель потребляет ток, в 3-5 раз превышающий номинальный до тех пор, пока ротор не наберет определенные обороты. Это явление исходит из принципа работы двигателя.
Таким образом, если в рабочем режиме ток двигателя позволяет использовать обычные автоматические выключатели, то для обеспечения нормального пуска коммутацию следует производить через мощный контактор (магнитный пускатель).
Магнитный пускатель
В отдельных случаях возможно подключение трехфазного двигателя в бытовую однофазную сеть. При этом сильно падают мощностные характеристики. Такая ситуация возникает очень часто, когда необходимо использовать промышленный привод в бытовых условиях. Используя специальную схему включения, обеспечивают нормальную работу мотора с учетом снижения мощности.
Как подготовить для подключения
Для правильного включения трехфазного двигателя необходимо помнить, что существует несколько схем соединения обмоток, среди которых:
«Звезда». Одни концы обмотки соединяют вместе, а другими подключаются к фазным проводам сети;
«Треугольник». Все три обмотки соединяются последовательно — конец каждой обмотки с началом следующей. Напряжение сети подается на точки соединения.
Обратите внимание! Для получения одинаковой мощности при соединении типа «звезда» требуется напряжение в √3 раз больше, чем при «треугольнике». Для двигателей, у которых допускается произвольное переключение обмоток, на шильдике обязательно указывается рабочее напряжение «220/380» или «127/220». Первое значение относится к соединению «треугольник», второе к «звезде».
В таких электродвигателях на клеммную колодку попарно в три ряда выведены начало и концы всех обмоток:
начало первой обмотки — конец второй;
начало второй — конец третьей;
начало третьей — конец первой.
Колодка двигателя, соединение «треугольник»
Для соединения «звезда» подключают один ряд из трех клемм двумя перемычками, а для соединения «треугольник» замыкают каждую пару тремя перемычками.
Как правильно подсоединить электродвигатель
От правильности включения обмоток электродвигателя зависит как ток потребления, так и направление вращения. Ток потребления вырастает, если двигатель, у которого на данное напряжение сети обмотки должны быть соединены «звездой», переключить на «треугольник». Такой режим работы является аварийным и приведет к выходу из строя.
Из теории трехфазного тока известно, что направление вращения электрической машины можно изменить, поменяв любые две фазы из трех местами. На этом основана схема реверсирования трехфазных асинхронных электродвигателей.
Важно! Схема реверсирования должна обеспечивать невозможность переключения фаз до момента остановки двигателя (прекращения подачи питания). В противном случае произойдет короткое замыкание сети.
Как подключить с 3 или 6 проводами
В большинстве случаев соединение двигателя с питающей сетью производится при помощи трех проводов. Даже если на клеммную колодку выведено шесть проводов, что соответствует трем парам обмотки, то путем соединения в нужную схему для подключения к питанию используется три провода.
Для мощных устройств учитывается, что асинхронный двигатель в момент запуска потребляет в несколько раз больший ток, поэтому используется сложная схема запуска, в которой в момент пуска обмотки подключаются «звездой», а после того как ротор наберет необходимые минимальные обороты, обмотки переключаются в «треугольник».
Шестипроводная схема включения
Важно! Для таких схем включения нужно подсоединять все шесть проводов обмоток электрической машины.
Схема подключения асинхронного электродвигателя
Асинхронные двигатели бывают не только трехфазные. Разработаны конструкции, которые могут подключаться в бытовую однофазную сеть. Схема электродвигателя для подключения к однофазной сети состоит из двух обмоток — рабочей и пусковой. Пусковая обмотка предназначена для формирования внутри статора вращающегося магнитного сдвига в момент пуска. Это необходимо для обеспечения начала вращения ротора. Фазный сдвиг осуществляется за счет включения пусковой обмотки через конденсатор.
Подключение однофазного двигателя
После того как ротор наберет обороты, пусковая обмотка уже не нужна. Маломощный однофазный привод будет работать нормально в таком режиме, но мощность двигателя возрастет, если оставить в работе пусковую обмотку, включенную через рабочий конденсатор.
Обратите внимание! Емкость рабочего конденсатора меньше, чем у пускового, так как нет необходимости сильного сдвига фазы. При высокой емкости через пусковую обмотку будет проходить большой ток, что приведет к ее перегреву.
В трехфазную электрическую сеть электромоторы включаются согласно их характеристикам и напряжению сети. Здесь главное — правильно выполнить необходимые соединения обмоток в соответствии с напряжением питания.
Нестандартная схема подключения трехфазного асинхронного электродвигателя применяется при использовании промышленных устройств в быту.
Подсоединение производят по нескольким вариантам:
с использованием частотного преобразователя;
через конденсатор.
Электронный частотный преобразователь (инвертор) позволяет не только сохранить мощность, но и улучшить целый ряд характеристик, недостижимых при включении по стандартной схеме. Это:
Плавный пуск.
Регулирование мощности.
Регулирование оборотов.
Частотный преобразователь преобразует однофазное питание в полноценную трехфазную сеть, в которой можно менять частоту, амплитуду, выполнять стабилизацию тока и напряжения в фазных проводах.
Обратите внимание! Большой недостаток частотных инверторов — их высокая стоимость.
Схема с конденсатором разработана таким образом, чтобы получить на одной из трех обмоток сдвиг фазы, достаточный для работы двигателя. Конденсаторная электросхема работоспособна как для «треугольника», так и для «звезды». Включение электромотора через конденсатор является наиболее простым решением проблемы, но имеет несколько недостатков:
максимальная мощность двигателя снижается до 50 %;
емкость фазосдвигающего конденсатора сильно зависит от нагрузки на электродвигатель.
То есть при работе на холостом ходу емкость должна быть минимальна и достигать максимума на полной мощности двигателя. Наиболее высокий ток потребления у асинхронного двигателя в момент запуска.
Подключение в однофазную сеть
Обратите внимание! На практике используют усредненное значение емкости для наиболее ожидаемого режима работы, поскольку малое значение не даст необходимую мощность, а высокое приведет к перегреву обмоток.
Правильный расчет емкости учитывает напряжение сети, схему включения обмоток и мощность двигателя. Конденсаторная схема включения должна предусматривать запуск двигателя через отдельный пусковой конденсатор, емкость которого должна быть выше рабочей в 2-3 раза.
Принципиальный момент — реверс обеспечивается подключение конденсатора к любой другой обмотке.
Однолинейная схема подключения электродвигателя
В энергетике часто применяются однолинейные схемы, в которых все линии питания вне зависимости от количества проводов и фаз обозначаются одной линией. Однолинейный чертеж не перегружен мелкими деталями, и это упрощает его чтение.
По однолинейной схеме удобно получать общее представление о работе и устройстве электроустановки. Трехфазные электродвигатели также обозначаются на однолинейных схемах. Важно учитывать при этом, что при разных способах коммутации фаз необходимо на чертеже указывать каждую фазу во избежание путаницы.
Чтобы подключать электрический двигатель к сети важно правильное определение назначения выводов обмоток и уже на основании имеющихся данных количество фаз, напряжение, мощность. Немаловажно выбрать наиболее подходящую схему включения.