Эквивалентная электрическая схема синхронного двигателя

Типовые схемы пуска синхронных электродвигателей

Синхронные двигатели получили широкое распространение в промышленности для электроприводов, работающих с постоянной скоростью (компрессоров, насосов и т.д.). В последнее время, вследствие появления преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.

Достоинства синхронных электродвигателей

Синхронный двигатель несколько сложнее, чем асинхронный, но обладает рядом преимуществ, что позволяет применять его в ряде случаев вместо асинхронного.

1. Основным достоинством синхронного электродвигателя является возможность получения оптимального режима по реактивной энергии , который осуществляется путем автоматического регулирования тока возбуждения двигателя. Синхронный двигатель может работать, не потребляя и не отдавая реактивной энергии в сеть, при коэффициенте мощности ( cos фи) равным единице.Если для предприятия необходима выработка реактивной энергии, то с и нхронный электродвигатель, работая с перевозбуждением, может отдавать ее в сеть.

2. Синхронные электродвигатели менее чувствительны к колебаниям напряжения сети, чем асинхронные электродвигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высокую перегрузочную способность. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя.

4. Скорость вращения синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.

Способы пуска синхронного электродвигателя

Возможны следующие способы пуска синхронного двигателя: асинхронный пуск на полное напряжение сети и пуск на пониженное напряжение через реактор или автотрансформатор.

Пуск синхронного двигателя осуществляется как пуск асинхронного. Собственный пусковой момент синхронной машины мал, а у неявнополюсной равен нулю. Для создания асинхронного момента ротор снабжается пусковой беличьей клеткой, стержни которой закладываются в пазы полюсной системы. (В явнополюсном двигателе стержни между полюсами, естественно, отсутствуют.) Эта же клетка способствует повышению динамической устойчивости двигателя при набросах нагрузки.

За счет асинхронного момента двигатель трогается и разгоняется. Ток возбуждения в обмотке ротора при разгоне отсутствует. Машина пускается невозбужденной, так как наличие возбужденных полюсов осложнило бы процесс разгона, создавая тормозной момент, аналогичный моменту асинхронного двигателя при динамическом торможении.

При достижении так называемой подсинхронной скорости, отличающейся от синхронной на 3 — 5%, подается ток в обмотку возбуждения и двигатель после нескольких колебаний около положения равновесия втягивается в синхронизм. Явнополюсные двигатели за счет реактивного момента при малых моментах на валу иногда втягиваются в синхронизм без подачи тока в обмотку возбуждения.

В синхронных двигателях трудно одновременно обеспечить необходимые значения пускового момента и входного момента под которым понимают асинхронный момент, развиваемый при достижении скоростью 95% синхронной. В соответствии с характером зависимости статического момента от скорости, т.е. в соответствии с типом механизма, для которого предназначен двигатель, на электромашиностроительных заводах приходится варьировать параметры пусковой клетки.

Иногда для ограничения токов при пуске мощных двигателей уменьшают напряжение на зажимах статора, включая последовательно обмотки автотрансформатора или резисторы. Следует иметь в виду, что при пуске синхронного двигателя цепь обмотки возбуждения замыкается на большое сопротивление, превышающее сопротивление самой обмотки в 5 — 10 раз.

В противном случае под действием токов, наводимых в обмотке при пуске, возникает пульсирующий магнитный поток, обратная составляющая которого, взаимодействуя с токами статора, создает тормозной момент. Этот момент достигает максимального значения при скорости, несколько превышающей половину номинальной, и под его влиянием двигатель может приостановить разгон на этой скорости. Оставлять на время пуска цепь возбуждения разорванной опасно, так как возможно повреждение изоляции обмотки индуцируемыми в ней ЭДС.

Читайте также:  Для чего предназначен стенд для разборки двигателей

Асинхронный пуск синхронного электродвигателя

Схема возбуждения синхронного двигателя с глухоподключенным возбудителем довольно проста и может применяться в том случае, если пусковые токи не вызывают падения напряжения в сети больше допустимого и статистический момент нагрузки Мс

Асинхронный пуск синхронного двигателя производится присоединением статора к сети. Двигатель разгоняется как асинхронный до скорости вращения, близкой к синхронной.

В процессе асинхронного пуска обмотка возбуждения замыкается на разрядное сопротивление, чтобы избежать пробоя обмотки возбуждения при пуске, так как при малой скорости ротора в ней могут возникнуть значительные перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Пуск заканчивается.

Слабым местом большинства электроприводов с синхронными двигателям, значительно усложняющим эксплуатацию и повышающим затраты, многие годы являлся электромашинный возбудитель. В настоящее время широкое распространение для возбуждения синхронных двигателей находят тиристорные возбудители . Они поставляются в комплектном виде.

Тиристорные возбудители синхронных электродвигателей более надежны и имеют более высокий к.п.д. по сравнению с электромашинными возбудителями. С их помощью легко решаются вопросы оптимального регулирования тока возбуждения для поддержания постоянства cos фи, напряжения на шинах, от которых питается синхронный двигатель, а также ограничение токов ротора и статора синхронного двигателя в аварийных режимах.

Тиристорными возбудителями комплектуется большинство выпускаемых крупных синхронных электродвигателей. Они выполняют обычно следующие функции:

  • пуск синхронного двигателя с включенным в цепь обмотки возбуждения пусковым резистором,
  • бесконтакное отключение пускового резистора после окончания пуска синхронного двигателя и защиту его от перегрева,
  • автоматическую подачу возбуждения в нужный момент пуска синхронного электродвигателя,
  • автоматическое и ручное регулирование тока возбуждения
  • необходимую форсировку возбуждения при глубоких посадках напряжения на статоре и резких набросах нагрузки на валу синхронного двигателя,
  • быстрое гашение поля синхронного двигателя при необходимости снижения тока возбуждения и отключениях электродвигателя,
  • защиту ротора синхронного двигателя от длительной перегрузки по току и коротких замыканий.

Если пуск синхронного электродвигателя производится на пониженное напряжение, то при «легком» пуске возбуждение подается до включения обмотки статора на полное напряжение, а при «тяжелом» пуске подача возбуждения происходит при полном напряжении в цепи статора. Возможно подключение обмотки возбуждения двигателя к якорю возбудителя последовательно с разрядным сопротивлением.

Процесс подачи возбуждения синхронному двигателю автоматизируется двумя способами: в функции скорости и в функции тока.

Система возбуждения и устройство управления синхронных двигателей должны обеспечивать:

  • пуск, синхронизацию и остановку двигателя (с автоматической подачей возбуждения в конце пуска);
  • форсировку возбуждения кратностью не менее 1,4 при снижении напряжения сети до 0,8U н ;
  • возможность компенсации двигателем реактивной мощности, потребляемой (отдаваемой) смежными электроприемниками в пределах тепловых возможностей двигателя;
  • отключение двигателя при повреждениях в системе возбуждения;
  • стабилизацию тока возбуждения с точностью 5% установленного значения при изменении напряжения сети от 0,8 до 1,1;
  • регулирование возбуждения по отклонению напряжения статора с зоной нечувствительности 8%;
  • при изменении питающего напряжения статора синхронного двигателя от 8 до 20% ток изменяется от установленного значения до 1,4 I н , увеличение тока возбуждения для обеспечения максимальной перегружаемости двигателя.
Читайте также:  Тест драйвы ford c max

На схеме, приведенной на рисунке, подача возбуждения синхронному двигателю осуществляется с помощью электромагнитного реле постоянного тока КТ (реле времени с гильзой). Катушка реле включается на разрядное сопротивление Rразр через диод VD. При подключении обмотки статора к сети в обмотке возбуждения двигателя наводится ЭДС. По катушке реле КТ проходит выпрямленный ток, амплитуда и частота импульсов которого зависят от скольжения.

При пуске скольжение S = 1. По мере разгона двигателя оно уменьшается и интервалы между выпрямленными полуволнами тока возрастают; магнитный поток постепенно снижается по кривой Ф(t).

При скорости, близкой к синхронной, магнитный поток реле успевает достигнуть значения потока отпадания реле Фот в момент, когда через реле КТ ток не проходит. Реле теряет питание и своим контактом создает цепь питания контактора КМ (на схеме цепь питания контактора КМ не показана).

Рассмотрим контроль подачи возбуждения в функции тока с помощью реле тока. При пусковом токе срабатывает реле тока КА и размыкает свой контакт в цепи контактора КМ2.

График изменения тока и магнитного потока в реле времени КТ

При скорости, близкой к синхронной, реле КА отпадает и замыкает свой контакт в цепи контактора КМ2. Контактор КМ2 срабатывает, замыкает свой контакт в цепи возбуждения машины и шунтирует резистор Rразр.

Эквивалентная схема для асинхронного электродвигателя

Асинхронный двигатель является хорошо известным устройством, которое работает по принципу трансформатора. По этой причине его также называют вращающимся трансформатором. Когда на статор приходит электродвижущая сила, в роторе возникает напряжение, которое является результатом электромагнитной индукции.

Так что асинхронный двигатель является трансформатором с вращающейся вторичной обмоткой. Тут первичная обмотка трансформатора имеет сходство с обмоткой статора асинхронного двигателя, в то время как вторичная обмотка походит на ротор.

Асинхронный электродвигатель всегда работает со скоростью ниже синхронной скорости и ниже скорости полной нагрузки. Относительная разница между синхронной скоростью и скоростью вращения известна как проскальзывание, которое обозначается s.

Где Ns является синхронной скоростью вращения, которая получается за счёт:

Где f является частотой напряжения, которое подаётся.

P является количеством полюсов у устройства.

Эквивалентная схема

Эквивалентная схема любого устройства демонстрирует различные параметры устройства, такие как омические потери, а также иные потери. Потери моделируются всего лишь за счёт индуктора и резистора. Потери меди имеют место быть в обмотках, поэтому принимается во внимание сопротивление обмотки.

Также обмотка обладает индуктивностью, для которой существует сброс напряжения, за счёт индукционного реактивного сопротивления, а также благодаря такому фактору как коэффициент мощности, который есть на рисунке. Существует два типа эквивалентных схем в случае с трёхфазным асинхронным электродвигателем.

Точная эквивалентная схема

Здесь R1 является сопротивлением обмотки статора.
X1 является индуктивностью обмотки статора.
Rc является компонентом потерь сердечника.
XM является намагничивающим реактивном сопротивлением обмотки.
R2/s является энергией ротора, которая включает в себя механическую энергию на выходе и потери меди ротора.

Если мы нарисуем схему, включающую статор, то схема будет выглядеть так:

Здесь все другие параметры одинаковы, за исключением:

R2’ является сопротивлением обмотки ротора, имеющим отношение к обмотке статора.
X2’ является индуктивностью обмотки ротора, имеющим отношение к обмотке статора.
R2(1 – s) / s является сопротивлением, которое показывает энергию, которая преобразуется в механическую энергию на выходе или полезную энергию. Энергия, которая рассеивается в том резисторе, является полезной энергией или энергией вала.

Примерная эквивалентная схема

Такая эквивалентная схема рисуется просто для того, чтобы упростить вычисление за счёт удаления одной вершины. Обходная ветка сдвинута к основной стороне. Это происходит, поскольку сброс напряжения между сопротивлением статора и индуктивностью меньше, и отсутствует большая разница между напряжением, которое подают, и тем напряжением, которое возникает. Как бы там ни было, это не является подходящим вариантом по следующим причинам:

1. Магнитная схема асинхронного электродвигателя имеет воздушный
промежуток, поэтому электрический ток больше по сравнению с
трансформатором, отсюда следует, что стоит применить точную
эквивалентную схему.

2. Индуктивность ротора и статора больше в асинхронном двигателе.

Читайте также:  Mitsubishi carisma чип тюнинг

3. В асинхронном электродвигателе используются распространенные
обмотки.

Взаимосвязь энергии в эквивалентной схеме

1. Энергия на входе для статора 3 V1I1Cos(Ɵ).
Где V1 – напряжение, применённое к статору.
I1 – ток, вырабатываемый обмоткой статора.
Cos(Ɵ) – энергия статора.

2. Вход ротора.
Вход энергии. Потери меди и железа статора.

3. Потеря меди ротора = Проскальзывание x вход энергии на ротор.

4. Создаваемая энергия = (1 – s) x энергия входа на ротор.

Эквивалентная схема однофазного асинхронного электродвигателя

Существует разница между однофазными и трёхфазными эквивалентными схемами. Схема для однофазного двигателя получается за счёт теории двойного вращающегося поля, которая говорит: Стационарное пульсирующее магнитное поле может быть разделено на два вращающихся поля. Оба они имеют равную магнитуду, однако их направление противоположно. Так что производимый крутящий момент равен нулю в состоянии покоя. Здесь переднее вращение называется вращением с проскальзыванием, s и заднее вращение получается с проскальзыванием (2 – s). Эквивалентная схема:

В большинстве случаев компонентом потерь сердечника r0 пренебрегают, так как это значение довольно небольшое, и сильно не влияет на расчёты.
Здесь Zf показывает переднее полное сопротивление и Zb показывает заднее полное сопротивление.
Также сумма переднего и заднего проскальзывания равняется двум, так что в случае заднего проскальзывания, оно замещается (2 – s).
R1 = Сопротивление обмотки статора.
X1 = Индуктивное реактивное сопротивление обмотки статора.
Xm = Намагничивающее реактивное сопротивление.
R2’ = Реактивное сопротивление ротора, имеющее отношение к статору.
X2’ = Индуктивное реактивное сопротивление ротора, которое имеет отношение к статору.

Расчёт энергии в эквивалентной схеме

1. Найдите Zf и Zb.

2. Найдите ток статора, который обеспечивается напряжением
статора/общим полным сопротивлением схемы.

3. Затем, найдите энергию на входе, которая обеспечивается за счёт:
Напряжения статора x Ток статора x Cos(Ɵ)
Где Ɵ является углом между током и напряжением статора.

4. Создаваемая энергия (Pg) является разницей между энергией переднего
поля и задней энергией. Передняя и задняя энергия получаются за счёт
рассеивания энергии в соответствующих резисторах.

5. Потери меди ротора возникают за счёт:
Проскальзывание x Pg

6. Энергия на выходе возникает за счёт:
Pg – s x Pg потеря вращения.
Потери вращения включают потери трения, потери сопротивления
воздуха, потери сердечника.

7. Эффективность также может быть подсчитана при помощи сильного
увеличения энергии на входе по отношению к энергии на выходе.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Оцените статью