- ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА
- ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ
- КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА
- УПРАВЛЕНИЕ ДВИГАТЕЛЯМИ ПЕРЕМЕННОГО ТОКА
- Электродвигатель переменного тока
- Устройство и принцип работы
- Асинхронный двигатель
- Синхронный двигатель
- Краткая история создания
- Особенности электродвигателя переменного тока, его достоинства и недостатки
- Сфера применения
- Схема подключения электродвигателя к сети
ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА
Двигатели переменного тока (ЭПТ) относятся к категории силовых агрегатов, в основу работы которых заложен принцип преобразования электрической энергии в механическое вращение.
Функционирование таких электротехнических устройств основано на эффекте вращающегося магнитного поля, создаваемого в статоре за счет соответствующего распределения питающего напряжения. Для понимания принципа работы двигателей переменного тока потребуется ознакомиться с существующими разновидностями этих агрегатов.
Виды двигателей переменного тока.
В зависимости от конструктивных особенностей и характера связи электромагнитного (э/м) поля вращающегося ротора и ЭДС неподвижного статора различают синхронные и асинхронные двигатели. В первых эта связь жесткая, а в асинхронных частоты их вращения отличаются на величину так называемого «скольжения».
По количеству полюсов, электромагнитных катушек статора и типу питающего напряжения все известные модели делятся на:
- однофазные (включая конденсаторные);
- трехфазные двигатели переменного тока;
- шаговые (многофазные) агрегаты.
По способу организации возбуждения и характеру связи с ротором различают коллекторные и бесколлекторные электродвигатели.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ
Независимо от типа электрической машины (синхронная или асинхронная, коллекторная или бесколлекторная) все они обладают следующими техническими характеристиками:
- количество рабочих фаз – одна или три (за исключением шаговых моделей);
- мощность электрическая и на валу;
- схемы соединения обмоток («звезда» или «треугольник»);
- класс защиты оборудования.
В однофазных машинах запуск осуществляется либо вручную, либо в них предусматривается специальная пусковая обмотка (фазосдвигающая цепочка с конденсатором).
В 3-х фазных агрегатах вращающееся э/м поле создается тремя независимыми катушками, размещенными на статоре под углом 120 градусов одна к другой. Соответствующие им ЭДС разнесены в электрическом пространстве на те же углы.
1. Электрической называют мощность, потребляемую от сети фазными обмотками двигателя в рабочем режиме.
2. Механическая мощность на валу – развиваемое ЭПТ вращательное усилие, измеряемое в Ваттах и характеризующее эффективность преобразования или КПД всего двигателя.
Схема включения обмоток выбирается с учетом особенностей конструкции агрегата и условий его работы. Чаще всего в бытовом электрооборудовании и инструменте применяется схема включения типа «звезда».
Класс защиты электродвигателей от проникновения внутрь механических частиц грязи, а также от попадания влаги устанавливается согласно стандарту EN 60034.
Для его обозначения используют две английские буквы IP со следующими за ними цифрами. Первая соответствует уровню защиты от попадания твердых частиц, а вторая – от проникновения во внутрь влаги.
КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА
Конструкция коллекторных электродвигателей содержит в своем составе следующие обязательные компоненты:
- ротор особой конструкции;
- статор с основными и возбуждающими обмотками;
- коллекторный узел с комплектом щеток.
Основа ротора (якоря) – магнитопровод из пластин электротехнической стали, между полюсами которого при изготовлении по определенной схеме укладываются витки медного провода.
Концы обмоток выводятся на коллекторный узел, являющийся коммутаторной частью системы (здесь осуществляется их переключение). С его помощью обмотка якоря соединяется со статорной в последовательную цепочку. При этом создаваемое в ней поле взаимодействуют с магнитным потоком статора, создавая необходимый вращающий момент.
Преимущества и недостатки.
К достоинствам коллекторных двигателей переменного тока относят плавность запуска и простоту схемы возбуждающей цепочки, включенной последовательно с основной обмоткой. Отмечается также возможность получения значительных по величине вращательных моментов. Эти изделия надежны в работе и хорошо «держат» предельные нагрузки на валу.
Недостатки этих агрегатов представлены ниже:
- повышенный уровень шумности;
- низкий по сравнению с бесколлекторными конструкциями кпд;
- необходимость постоянного обслуживания коллекторного узла из-за износа и загрязнения его элементов (ламелей);
- потребность в обновлении и регулировки щеток;
- высокий уровень радиопомех.
К минусам коллекторных электродвигателей также относят недостаточную надежность рабочих узлов и малые сроки эксплуатации входящих в их состав элементов.
Область применения коллекторных двигателей определяется особенностью их конструкции.
При частоте сетевого напряжения 50 Гц скорость вращения вала у этих изделий достигает 9000-10000 об/мин. Именно поэтому двигатели с коллекторным узлом типа широко применяются в бытовой аппаратуре самого различного класса.
Это:
- стиральные машины;
- электромясорубки, кофемолки и миксеры;
- электроинструмент (дрели, болгарки, перфораторы и т. п.).
Сегодня традиционные коллекторные двигатели везде, где это возможно, заменяются современными бесщеточными агрегатами.
С расширением и удешевлением современной электронной базы их производство становится более выгодным. Одновременно совершенствуются схемы управления, работающие на полупроводниковых элементах различного класса.
УПРАВЛЕНИЕ ДВИГАТЕЛЯМИ ПЕРЕМЕННОГО ТОКА
В основу управления режимами работы двигателей переменного тока заложен принцип зависимости частоты вращения вала от величины напряжения, прикладываемого к катушкам статора.
При фиксированной величине тока это означает изменение мощности, передаваемой в нагрузочную (роторную) цепь. Еще один параметр, которым нередко приходится управлять при эксплуатации двигателей рассматриваемого класса – направление вращения вала (реверс).
Для реализации двух этих возможностей применяются различные схемы, построенные на компонентах того или иного типа.
Это могут быть:
- транзисторные ключи или реле;
- тиристорные элементы;
- электронные тиристоры (симисторы).
Транзисторы применяется сегодня крайне редко, поскольку на смену им пришли более эффективные тиристорные и симисторные управляющие элементы.
С их помощью удается непосредственно изменять величину мощности, отдаваемой в нагрузочную цепочку ротора. Для этих целей применяются современные методы широтно-импульсного или фазоимпульсного управления.
Для получения нужной частоты вращения вала и мощности, отдаваемой непосредственно в нагрузку, используется особый электронный элемент – симистор. Степень его открытия задается подачей на управляющий электрод соответствующего напряжения или последовательности прямоугольных импульсов.
Во втором случае частота следования задает время открытия прямого перехода симистора, что в конечном счете определяет величину мощности, передаваемой в управляемую роторную цепочку.
© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.
Электродвигатель переменного тока
Электрические двигатели давно и прочно заняли лидирующие позиции среди силовых агрегатов различного типа оборудования. Их можно найти в автомобиле и в пылесосе, в сложнейших станках и в обычных детских игрушках. Они есть практически везде, хотя и отличаются между собой типом, строением и рабочими характеристиками.
Электродвигатели – это силовые агрегаты, способные превращать электрическую энергию в механическую. Различают два их основных вида: двигатели переменного и постоянного тока. Разница между ними, как понятно из названия, заключается в типе питающего тока. В данной статье речь пойдет о первом виде – электродвигателе переменного тока
Устройство и принцип работы
Основная движущая сила любого электрического двигателя – электромагнитная индукция. Электромагнитная индукция, если описать ее в двух словах – это появление силы тока в проводнике, помещенном в переменное магнитное поле. Источником переменного магнитного поля является неподвижный корпус двигателя с размещенными на нем обмотками – статор, подключенный к источнику переменного тока. В нем расположен подвижный элемент – ротор, в котором и возникает ток. По закону Ампера на заряженный проводник, помещенный в магнитное поле, начинает действовать электродвижущая сила – ЭДС, которая вращает вал ротора. Таким образом, электрическая энергия, которая подается на статор, превращается в механическую энергию ротора. К вращающемуся валу можно подключать различные механизмы, выполняющие полезную работу.
Электродвигатели переменного тока делятся на синхронные и асинхронные. Разница между ними в том, что в первых ротор и магнитное поле статора вращаются с одной скоростью, а во вторых ротор вращается медленнее, чем магнитное поле. Отличаются они и по устройству, и по принципу работы.
Асинхронный двигатель
Устройство асинхронного двигателя
На статоре асинхронного двигателя закреплены обмотки, создающие переменное вращающееся магнитное поле, концы которой выводятся на клеммную коробку. Поскольку при работе двигатель нагревается, на его валу устанавливается вентилятор системы охлаждения.
Ротор асинхронного двигателя выполнен с валом как одно целое. Он представляет собой металлические стержни, замкнутые между собой с двух сторон, из-за чего такой ротор еще именуется короткозамкнутым. Своим видом он напоминает клетку, поэтому его часто называют «беличьим колесом» Более медленное вращение ротора в сравнении с вращением магнитного поля – результат потери мощности при трении подшипников. Кстати, если бы не было этой разницы в скорости, ЭДС бы не возникала, а без нее не было бы и тока в роторе и самого вращения.
Магнитное поле вращается за счет постоянной смены полюсов. При этом соответственно меняется направление тока в обмотках. Скорость вращения вала асинхронного двигателя зависит от числа полюсов магнитного поля.
Синхронный двигатель
Устройство синхронного двигателя
Устройство синхронного электродвигателя немного отличается. Как понятно из названия, в этом двигателе ротор вращается с одной скоростью с магнитным полем. Он состоит из корпуса с закрепленными на нем обмотками и ротора или якоря, снабженного такими же обмотками. Концы обмоток выводятся и закрепляются на коллекторе. На коллектор или токосъемное кольцо подается напряжение посредством графитовых щеток. При этом концы обмоток размещены таким образом, что одновременно напряжение может подаваться только на одну пару.
В отличие от асинхронных на ротор синхронных двигателей напряжение подается щетками, заряжая его обмотки, а не индуцируется переменным магнитным полем. Направление тока в обмотках ротора меняется параллельно с изменением направления магнитного поля, поэтому выходной вал всегда вращается в одну сторону. Синхронные электродвигатели позволяют регулировать скорость вращения вала путем изменения значения напряжения. На практике для этого обычно используются реостаты.
Краткая история создания
Впервые возможность превратить электричество в механическую энергию открыл британский ученый М.Фарадей еще в 1821 году. Его опыт с проводом, помещенным в ванну с ртутью, оснащенной магнитом, показал, что при подключении провода к источнику электроэнергии он начинает вращаться. Этот нехитрый опыт наверняка многие помнят по школе, правда, ртуть там заменяется безопасным рассолом. Следующим шагом в изучении этого феномена было создание униполярного двигателя – колеса Барлоу. Никакого полезного применения он так и не нашел, зато наглядно демонстрировал поведение заряженного проводника в магнитном поле.
На заре истории электродвигателей ученые пытались создать модель с сердечником, двигающимся в магнитном поле не по кругу, а возвратно-поступательно. Такой вариант был предложен, как альтернатива поршневым двигателям. Электродвигатель в привычном для нас виде впервые был создан в 1834 году русским ученым Б.С. Якоби. Именно он предложил идею использования вращающегося в магнитном поле якоря, и даже создал первый рабочий образец.
Первый асинхронный двигатель, в основе работы которого заложено вращающееся магнитное поле, появился в 1870 году. Авторами эффекта вращающегося магнитного поля независимо друг от друга стали два ученых: Г.Феррарис и Н. Тесла. Последнему принадлежит также идея создания бесколлекторного электродвигателя. По его чертежам были построены несколько электростанций с применением двухфазных двигателей переменного тока. Следующей более удачной разработкой оказался трехфазный двигатель, предложенный М.О. Доливо-Добровольским. Его первая действующая модель была запущена в 1888 году, после чего последовал ряд более совершенных двигателей. Этот русский ученый не только описал принцип действия трехфазного электродвигателя, но и изучал различные типы соединений фаз (треугольник и звезда), возможность использование разных напряжений тока. Именно он изобрел пусковые реостаты, трехфазные трансформаторы, разработал схемы подключения двигателей и генераторов.
Особенности электродвигателя переменного тока, его достоинства и недостатки
На сегодня электродвигатели являются одними из самых распространенных видов силовых установок, и тому есть немало причин. У них высокий КПД порядка 90%, а иногда и выше, довольно низкая себестоимость и простая конструкция, они не выделяют вредных веществ в процессе эксплуатации, дают возможность плавно менять скорость во время работы без использования дополнительных механизмов типа коробки передач, надежны и долговечны.
Среди недостатков всех типов электромоторов — отсутствие высокоемкостного аккумулятора электроэнергии для автономной работы.
Основное отличие электродвигателя переменного тока от его ближайшего родственника – электродвигателя постоянного тока – заключается в том, что первый питается переменным током. Если сравнивать их функциональные возможности, первый менее мощный, у него сложно регулировать скорость в широком диапазоне, он имеет меньший КПД.
Если же сравнивать асинхронный и синхронный электродвигатель переменного тока, то первый имеет более простую конструкцию и лишен «слабого звена» — графитовых щеток. Именно они обычно первыми выходят из строя при поломке синхронных двигателей. Вместе с тем, у него сложно получить и регулировать постоянную скорость, которая зависит от нагрузки. Синхронные двигатели позволяют регулировать скорость вращения с помощью реостатов.
Сфера применения
Электродвигатели переменного тока широко используются практически во всех сферах. Ими оснащаются электростанции, их используют в автомобиле- и машиностроении, есть они и в домашней бытовой технике. Простота их конструкции, надежность, долговечность и высокий показатель КПД делает их практически универсальными.
Асинхронные двигатели нашли применение в приводных системах различных станков, машин, центрифуг, вентиляторов, компрессоров, а также бытовых приборов. Трехфазные асинхронные двигатели являются наиболее распространенными и востребованными. Синхронные двигатели используются не только в качестве силовых агрегатов, но и генераторов, а также для привода крупных установок, где важно контролировать скорость.
Схема подключения электродвигателя к сети
Электродвигатели переменного тока бывают трех и однофазные.
Асинхронные однофазные двигатели имеют на корпусе 2 вывода и подключить их к сети не составляет трудности. Т.к. вся бытовая электрическая сеть в основном однофазная 220В и имеет 2 провода — фаза и ноль. С синхронными все намного интереснее, их тоже можно подключить с помощью 2 проводов, достаточно обмотки ротора и статора соединить. Но соединять их нужно так, чтобы обмотки однополюсного намагничивания ротора и статора располагались напротив друг друга.
Сложности представляют двигатели для 3ех фазной сети. Ну во-первых у таких двигателей в основном в клеммной коробке 6 выводов и это означает что обмотки двигателя нужно подключать самому, а во-вторых их обмотки можно подключать разными способами — по типу «звезда» и «треугольник». Ниже приведен рисунок соединения клем в клеммной коробке, в зависимости от типа соединения обмоток.
Подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.
Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в раз. Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних. В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).
Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рисунке. Обмотка ротора этого двигателя соединена с пусковым реостатом ЯР, создающим в цепи ротора добавочное сопротивление Rдобав.