Датчик температуры для автомобиля с чего состоит

Устройство, принцип действия, диагностика датчиков температуры

Датчики температуры двигателя. Engine coolant temperature sensor Intake air temperature sensor. Существуют различные типы систем управления двигателем, устройство которых может различаться в значительной мере. Но в любой из систем управления двигателем обязательно применяется датчик температуры охлаждающей жидкости. В большинстве систем применяется датчик температуры воздуха во впускном тракте двигателя.

Внешний вид датчика температуры двигателя — охлаждающей жидкости (слева) и датчика температуры воздуха во впускном тракте (справа)

В зависимости от температуры охлаждающей жидкости, блок управления двигателем корректирует состав топливовоздушной смеси, частоту вращения коленчатого вала двигателя на холостом ходу, угол опережения зажигания. Влияние показаний датчика температуры охлаждающей жидкости на работу системы управления двигателем очень велико. Например, если вследствие неисправности рассчитанное блоком управления двигателем значение температуры охлаждающей жидкости двигателя не совпадает с фактической температурой охлаждающей жидкости двигателя на значительную величину, двигатель может заглохнуть / не запускаться. Большинство датчиков температуры воздуха во впускном тракте аналогичны по устройству и принципу действия датчику температуры охлаждающей жидкости. В зависимости от температуры воздуха во впускном тракте, блок управления двигателем несколько корректирует состав топливовоздушной смеси. Влияние показаний датчика температуры воздуха во впускном тракте на работу системы управления двигателем особенно заметно в таких системах, где не применяется датчик расхода воздуха.

Принцип действия датчиков температуры двигателя

В качестве датчиков температуры охлаждающей жидкости и большинства датчиков температуры воздуха во впускном тракте двигателя применяются терморезисторы с отрицательным температурным коэффициентом — с увеличением температуры датчика температуры двигателя его сопротивление уменьшается. Датчик температуры охлаждающей жидкости устанавливается в потоке охлаждающей жидкости двигателя. При низкой температуре охлаждающей жидкости, сопротивление датчика высокое (3,52 kQ при +20 °С); при высокой температуре -сопротивление датчика низкое (240 Q при +90 °С). От блока управления двигателем, через расположенный внутри блока управления двигателем резистор с постоянным электрическим сопротивлением, на датчик температуры двигателя поступает опор. напряжение величиной 5 V. Второй вывод датчика соединён с «массой».

Схема включения датчика температуры двигателя, в качестве чувствительного элемента которого применяется терморезистор. ECU Блок управления двигателем.

  1. Точка подключения зажима типа «крокодил» осциллографического щупа.
  2. Точка подключения пробника осциллографического щупа для получения осциллограммы выходного напряжения датчика.
  3. Датчик температуры.
  4. Выключатель зажигания.
  5. Аккумуляторная батарея.

Датчик температуры двигателя шунтирует опор. напряжение, вследствие чего, значение напряжения на датчике оказывается меньшим опор. С увеличением температуры охлаждающей жидкости (например, при прогреве двигателя), сопротивление датчика уменьшается и, соответственно, уменьшается напряжение на датчике. По величине этого напряжения блок управления двигателем рассчитывает текущее значение температуры охлаждающей жидкости двигателя.

Характеристика датчика температуры охлаждающей жидкости.

Температура, °С Сопротивление, Q ± 2%
-40 100 700
-30 52 700
-20 28 680
-15 21 450
-10 16 180
-4 12 300
0 9 420
+5 7 280
+10 5 670
+15 4 450
+20 3 520
+25 2 800
+30 2 240
+40 1 460
+45 1 190
+50 970
+60 670
+70 470
+80 330
+90 240
+100 180
+130 70

Типовые неисправности датчика температуры двигателя

Наиболее распространённой неисправностью датчиков температуры двигателя, в качестве чувствительного элемента которых применён терморезистор, является несоответствие его электрического сопротивления температуре его корпуса. Чаще всего, такая неисправность проявляется как резкое увеличение электрического сопротивления датчика в очень узком диапазоне температур корпуса датчика (или в нескольких диапазонах температур), реже встречается обрыв чувствительного элемента датчика. В момент, когда температура корпуса датчика попадает в этот диапазон, сопротивление датчика резко увеличивается, вследствие чего увеличивается и напряжение на датчике. Вследствие этого, рассчитанное блоком управления значение температуры по увеличенному напряжению на датчике оказывается меньшим действительного. Если рассчитанное блоком управления двигателем значение температуры охлаждающей жидкости двигателя окажется меньшим действительного на значительную величину, блок управления может увеличить количество подаваемого топлива настолько, что двигатель заглохнет из-за переобогащения топливовоздушной смеси. Пуск двигателя при этом становится невозможным. В некоторых случаях может понадобиться замена свечей зажигания. Неисправность датчика температуры двигателя в момент её проявления можно выявить при помощи омметра путём сравнения измеренного сопротивления датчика температуры двигателя с табличным значением для данной температуры.

Читайте также:  Фильтр масляный двигателя 21011012005

При необходимости проведения проверки датчика температуры, необходимо просмотреть осциллограмму выходного напряжения датчика во всём диапазоне его рабочих температур. При проведении проверки датчика температуры необходимо дать двигателю полностью остыть, после чего записать и просмотреть осциллограмму выходного напряжения датчика во время прогрева двигателя, вплоть до момента включения вентилятора системы охлаждения двигателя (или до момента, когда вследствие неисправности диагностируемого датчика двигатель заглохнет).

Осциллограмма напряжения на исправном датчике температуры охлаждающей жидкости. Прогрев холодного двигателя в режиме работы на холостом ходу. По мере прогрева, напряжение на датчике плавно и без каких либо рывков / провалов снижается.

По мере прогрева датчика, напряжение на исправном датчике должно плавно снижаться.

Осциллограмма напряжения на неисправном датчике температуры охлаждающей жидкости. Двигатель почти прогрелся до рабочей температуры. Отчётливо видны искажения формы осциллограммы.

Напряжение на неисправном датчике температуры охлаждающей жидкости при прогреве двигателя внезапно резко увеличивается. В этот момент, блок управления двигателем резко обогащает топливовоздушную смесь. Но так как в данном случае неисправность датчика проявляется в очень узком диапазоне температур, а следовательно и в течение короткого времени, двигатель не заглох. По мере дальнейшего увеличения температуры охлаждающей жидкости неисправность уже не проявлялась.

В качестве датчиков температуры воздуха во впускном тракте двигателя иногда применяется PN-переход (диод), например, датчик температуры воздуха встроенный в корпус датчика массового расхода воздуха BOSCH HFM5.

Внешний вид датчика температуры воздуха во впускном тракте на основе PN-перехода (датчик температуры встроен в корпус датчика массового расхода воздуха BOSCH HFM5)

С ростом температуры такого датчика при заданном токе, протекающем через датчик, напряжение на датчике снижается от 650 mV до 350 mV.

ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг

Home Автоэлектроника Указатели температуры режима двигателя на автомобиле

Указатели температуры режима двигателя на автомобиле


Рис. 1. Электротепловой импульсный указатель температуры: а — схема; б — датчик TM101; в — приемник.

Для контроля теплового режима двигателя на автомобилях устанавливают указатели температуры и сигнализаторы аварийной температуры. На некоторых автомобилях указатели температуры применяют также для контроля теплового режима, смазочной системы, гидравлической трансмиссии, отопителя и т. д.

Рассмотрим два типа указателей температуры которые применяются на автомобилях: электротепловые импульсные и магнитоэлектрические с терморезисторным датчиком.

Электротепловой импульсный указатель температуры состоит из датчика (рис. 1) и стрелочного приемника, обмотки которых соединены последовательно.

Датчик ТМ101 импульсного указателя температуры (рис. 1, б) представляет собой латунный тонкостенный баллон 13, вставленный в корпус 8. В баллоне размещена биметаллическая пластина 10, одним концом закрепленная на изоляторе основания 14. На конце пластины установлен подвижной контакт 11, прижимающийся к неподвижному контакту 12. На пластину намотана обмотка 9 из константановой проволоки диаметром 0,12 мм, имеющей изоляцию из стеклянного волокна. Сопротивление обмотки 14 Ом. Один конец обмотки 9 присоединен к металлической пластине, а второй через токоведущую деталь 15 — к выводному зажиму 17, закрепленному на изоляторе 16. Неподвижный контакт 12 соединен с корпусом датчика. Контакты датчика изготовлены из серебра (75 %) и кадмия (25 %).

Приемник термометра (рис. 1, в) имеет П-образную биметаллическую пластину 26, которая одним концом закреплена на регулируемом секторе 23, а другим шарнирно соединена со стрелкой 21. Сектор, с жестко присоединенной к нему биметаллической пластиной, может смещаться при регулировке относительно его оси 27 крепления при помощи зубьев 22. Второй сектор 18 с упругой пластиной 19 служит шарнирной опорой для стрелки и прижимает ее к крючку 20 на конце биметаллической пластины. Для регулировки приемника второй сектор имеет зубья 28.

Читайте также:  Чип тюнинг инжекторов уаз

Плечо биметаллической пластины, соединенное с сектором 23, называют термокомпенсационным, плечо, соединенное со стрелкой, — рабочим. На рабочее плечо биметаллической пластины навита константановая обмотка 24 сопротивлением 40 Ом. Оба конца этой обмотки выведены к зажимам 25 и 29 приемника.

При нормальной окружающей температуре, когда указатель не включен в цепь, контакты 7 (см. рис. 1, а) датчика 5 находятся в замкнутом состоянии, рабочее плечо 3 биметаллической пластины приемника 1 не изогнуто и стрелка 2 находится в крайнем правом положении шкалы за отметкой 110 °С.

При включении указателя в цепь ток, проходящий через обмотки 4 и 6, нагревает биметаллические пластины датчика и приемника. При этом пластина датчика, изгибаясь, свободным концом размыкает контакты и прерывает ток в цепи. Несколько охладившись, она вновь замыкает контакты, и ток снова будет нагревать пластины. При постоянной окружающей температуре установится определенная частота размыкания контактов, причем отношение продолжительности замкнутого состояния контактов к продолжительности времени цикла будет зависеть от окружающей температуры. Чем выше окружающая температура среды, в которой находится биметаллическая пластина датчика, чем медленнее она остывает после размыкания контактов от проходящего по обмотке тока, тем быстрее нагревается этим током после замыкания контактов. Силу эффективного тока, нагревающего термобиметаллическую пластину приемника, можно определить по формуле:

где I0 — сила тока, протекающего по цепи при замкнутых контактах; Тз и Тр — время замкнутого и разомкнутого состояния контактов.

При включении прибора, когда температура датчика низкая, эффективный ток, значительно нагревая рабочее плечо биметаллической пластины приемника, вызовет ее изгиб и смещение стрелки влево в область малых температур на шкале. С повышением температуры датчика сила тока Iэф будет уменьшаться, нагрев рабочего плеча биметаллической пластины приемника и ее изгиб будут меньше, а показания прибора увеличатся. При температуре датчика выше 110 °С его биметаллическая пластина не будет замыкать контакты совсем, ток в приборе прекратится, и под действием биметаллической пластины приемника стрелка установится в крайнее правое положение.

Преимуществом электротепловых импульсных указателей являются простота конструкции и малая стоимость; сопротивление соединительных проводов и переходных контактов не влияет на точность показаний.

Электротепловые импульсные приборы обладают следующими недостатками: контакты датчика при работе создают помехи радиоприему; точность показаний зависит от напряжения питания; малый размах шкалы приемника (до 45 что затрудняет чтение показаний.

Магнитоэлектрические указатели температуры


Рис. 2. Магнитоэлектрический указатель температуры:
а — датчик ТМ100 с терморезистором; б — измерительный элемент приемника; в — вид на приемник со снятой шкалой; г — электрическая схема магнитоэлектрического указателя температуры.

Позднее, вместо этих приборов стали устанавливать магнитоэлектрические указатели. Датчик (рис. 2, а) этого указателя представляет собой баллон 1, к дну которого прижат токоведущей пружиной 2 терморезистор 3. Сопротивление терморезистора при изменении его температуры меняется в широких пределах (50—450 Ом).

Приемник (рис. 2, б и в) имеет каркас 4, состоящий из двух пластмассовых половин, соединенных стяжными винтами 10. На пластины намотаны обмотки трех измерительных катушек 8. Вторая обмотка расположена под углом 90° к двум другим. Для повышения чувствительности прибора первая и третья катушки имеют противоположное направление витков обмоток, вследствие чего возникающие магнитные потоки направлены навстречу один другому. Внутри каркаса размещен постоянный магнит 9, установленный на одной оси 7 со стрелкой. Магнит может поворачиваться, ориентируясь вдоль магнитных силовых линий магнитного поля трех катушек.

В нижней половине каркаса находится подпятник 11 оси дискообразного магнита и стрелки. Один конец оси магнита помещен в отверстии мостика 6, который закреплен на каркасе и служит опорой шкалы прибора.

Читайте также:  Как правильно развести бензин с маслом для лодочного мотора при обкатке

Для возврата подвижной системы в нулевое положение при выключенном приборе в нижнюю половину каркаса встроен небольшой магнит. Каркас в сборе с катушками и магнитом размещен в экранирующем цилиндре 5 из низкоуглеродистой стали для исключения воздействия на магнит посторонних магнитных полей и устранения влияния магнитного поля катушки на показания других приборов.

Измерительный узел 12 приемника монтируют в комбинации приборов или в корпусе самостоятельного прибора. В обоих случаях концы обмоток присоединены к выводным зажимам и резисторам 14 и 16. Приемник имеет регулятор 13 с магнитом. На приборной панели автомобиля, указатель температуры освещает лампа, расположенная в гнезде 15.

При включении датчика и приемника в цепь питания ток проходит по двум параллельным цепям: обмотки L1 и L2 приемника — термокомпенсационный резистор R: обмотка L3 приемника — терморезистор RT датчика (рис. 2, г). Магнитные потоки обмоток L1 и L3 направлены в противоположные стороны.

В корпусе приемника (на напряжение 12 В) вместе с механизмом размещен термокомпенсационный константановый резистор R, который обеспечивает стабильность показаний при изменении температуры обмоток приемника. В корпусе приемника, рассчитанного на 24 В, кроме того, установлен дополнительный резистор 16 (см. рис. 2, в), включенный последовательно с обмотками приемника. Такая схема включения позволяет унифицировать конструкцию и обмоточные данные указателей температуры для применения их в системах электрооборудования автомобилей на напряжение бортовой сети 12 и 24 Вольт.

Сигнализатор аварийной температуры автомобиля


Рис. 3. Сигнализатор аварийной температуры:
а — электрическая схема автомобильного сигнализатора аварийной температуры; б — датчик ТМ111; в — датчик РС403-БГ; 1 — сигнальная лампа; 2 — биметаллическая пластина; 3 — контакты; 4 — биметаллическая пластина; 5 — изолятор; 6 — выводной зажим; 7 — тарельчатый контакт; 8 — контакт; 9 — прижимная шайба; 10 — латунный корпус; 11 — баллон; 12 — токоведущая пластина; 13 — регулировочный винт; 14 — выводной зажим.

Сигнализатор аварийной температуры (рис. 3, а) состоит из датчика и сигнальной лампы 7. Датчик имеет биметаллическую пластину 2, управляющую контактами 3, при замыкании которых включается сигнальная лампа 1. Конструкция автомобильных датчиков температуры двух типов показана на рис. 3, б и в. Датчик РС403-Б (см. рис. 3, в) применяют для контроля температуры масла. Температуру включения [(140 ± 3) °С] можно регулировать в процессе эксплуатации с помощью регулировочного винта 13. Датчик ТМ111 (см. рис. 3, 6) предназначен для контроля температуры жидкости (КамАЗ). Регулировка замыкания контактов (при температуре 98—104 °С) производится перемещением тарельчатого контакта 7.

Сигнализатор температуры установлен в верхнем бачке радиатора, а в двигателях с воздушным охлаждением — в смазочной системе. Сигнализаторы применяют также для контроля температуры масла в автоматической коробке передач (автобусы ЛиАЗ-677). Аналогичные датчики (ТМ108) используют для включения электровентилятора в системе охлаждения двигателя.

Датчики сигнализаторов аварийной температуры работают в системах электрооборудования автомобиля с напряжением 12 и 24 В с лампами силой света 1—1,5 кд.

Основные параметры некоторых датчиков указателей и сигнализаторов температуры приведены в табл. 1, приемников указателей температуры в табл. 2.

Датчик Пределы
изменения
температуры, °С
Температура
замыкания
контактов, °С
Номинальное
напряжение, В
Чувствительный
элемент
Автомобили
ТМ100-А, -В 40-120 12; 24 Терморезистор Всех марок
ТМ101 40-110 12 Биметалл То же
ТМ102 112-118 12; 24 >> Зил 130; 131
ТМ106 20-120 12 Терморезистор ВАЗ
ТМ108* 89-95 12 Биметалл ВАЗ 2103, 2106;
2107, 2108;
ЗАЗ-1102
ТМ111 98-104 12; 24 >> Всех марок
ТМ112 102-110 12; 24 >> МАЗ 504Б, 516Б;
ГАЗ 3102, 53-11
ТМ113 110-118 12; 24 >> ЗИЛ-130Г
11.3842** -40?+40 12; 24 Терморезистор Северного
исполнения

* Датчик выключения электровентилятора в системе охлаждения двигателя.
** Датчик температуры электролита аккумуляторных батарей.

Оцените статью