Бензиновый двигатель электрическая схема

Бензиновый двигатель электрическая схема

Электрооборудование двигателей внутреннего сгорания

Схемы и конструкция электрооборудования бензиновых и дизельных двигателей


Наши дополнительные сервисы и сайты:


e-mail:
office@matrixplus.ru
tender@matrixplus.ru

icq:
613603564

skype:
matrixplus2012

телефон
+79173107414
+79173107418

г. С аратов

Статистика

Принципиальная схема электрооборудования карбюраторного двигателя

Электрическая энергия в карбюраторном двигателе внутреннего сгорания широко применяется для различных целей: воспламенения рабочей смеси в цилиндрах двигателя, вращения коленчатого вала двигателя при пуске, питания вспомогательного оборудования, пуска двигателя с помощью стартера.

Система электрооборудования карбюраторного двигателя состоит из источников тока (аккумуляторная батарея и генератор) и потребителей тока (пусковое устройство, приборы зажигания и распределительная аппаратура).

Соединение источников тока с потребителями обычно осуществляется по однопроводной системе соединений, при которой источник тока и потребитель соединены одним проводом, а вторым проводом является корпус двигателя, так называемая масса.

Обычно с массой соединен минусовый зажим аккумуляторной батареи и генератора. Однако имеются также схемы, в которых с массой соединены положительные зажимы аккумуляторной батареи и генератора.

В основном электрооборудование карбюраторных двигателей рассчитано на номинальное напряжение 12 в с использованием постоянного тока. Значительно реже применяется электрооборудование, работающее при напряжении 6 и 24 е. Применение системы электрооборудования двигателей с напряжением 12 в по сравнению с напряжением 6 в имеет некоторые преимущества: облегчает пуск двигателей, увеличивает срок службы приборов зажигания, уменьшает чувствительность к нарушению контактных соединений в электрических цепях и сокращает потребление меди для проводов.

На рис. 1 изображена принципиальная схема электрооборудования карбюраторного двигателя. Источники тока — аккумуляторная батарея 1 и генератор 7, а также все потребители включены параллельно, но питание всех потребителей может происходить только от одного из источников тока.

При работе двигателя с малым числом оборотов потребители питаются от аккумуляторной батареи, так как генератор не развивает достаточной электродвижущей силы (э. д. е.). С увеличением числа оборотов наступает момент, когда э. д. с. генератора превысит э. д. с. батареи, и генератор включится в цепь. В этом случае ток начнет поступать от генератора в аккумуляторную батарею.

Рис. 1. Принципиальная схема электрооборудования карбюраторного двигателя: 1 — аккумуляторная батарея; 2 — стартер; 3 — амперметр; 4 — ключ зажигания; 5 — катушка зажигания; 6 — реле-регулятор; 7 — генератор; 8 — прерыватель; 9 — распределитель; 10 — свеча зажигания

Во избежание прохождения обратного тока из батареи в генератор при уменьшении его э. д. с. между ними устанавливают автоматический выключатель — реле обратного тока.

Для того чтобы напряжение генератора сохранялось постоянным независимо от числа оборотов двигателя, генератор включается совместно с регулятором напряжения. От перегрузки генератор защищен ограничителем тока. Реле обратного тока, реле напряжения и ограничитель тока нагрузки генератора расположены в общем корпусе и называются реле-регулятором.

Система зажигания, у которой в качестве источников тока используются аккумуляторная батарея и генератор с реле-регулятором 6, называется батарейной системой зажигания.

Батарейная система зажигания состоит из катушки зажигания 5, свечей зажигания 10, прерывателя 8 и распределителя 9. Ток высокого напряжения получается в катушке зажигания путем превращения тока низкого напряжения, поступающего из аккумуляторной батареи или генератора. Превращение постоянного тока низкого напряжения в ток высокого напряжения осуществляется при размыкании цепи низкого напряжения специальным прибором — прерывателем.

Распределитель служит для подведения в требуемой последовательности тока высокого напряжения к свечам отдельных цилиндров двигателя.

Прерыватель с распределителем объединены в один прибор, называемый распределителем.

Стартер 2 предназначен для пуска двигателя. Он представляет собой электродвигатель постоянного тока с последовательным возбуждением и с устройством для сцепления якоря с маховиком двигателя в период пуска.

Контроль за режимом зарядки аккумуляторной батареи от генератора осуществляется по амперметру 3. Ключ 4 предназначен для включения системы зажигания.

Из всех потребителей тока в электрооборудовании карбюраторных двигателей наибольшую мощность потребляет стартер. Его пусковой ток может достигать 500-600 а при напряжении 12 в и 1000-1200 а и более при напряжении 24 в.

Система батарейного зажигания при своей работе потребляет мощность в несколько десятков ватт.

Кроме рассмотренной системы батарейного зажигания, у карбюраторных двигателей может применяться также система зажигания от магнето. В этом случае надобность в аккумуляторной батарее как источника тока отпадает.


форсунок в ультразвуковых ваннах и на стендах

Дезинфицирующие средства

широкого применения

для дезинфекции на объектах железнодорожного транспорта, пищевой промышленности, ЛПУ, ветеринарного надзора

Моющие средства

для железнодорожного транспорта, сертифицированные ВНИИЖТ- «Фаворит К» и «Фаворит Щ», внутренняя и наружная замывка вагонов.

Бензиновый двигатель электрическая схема

Электрооборудование двигателей внутреннего сгорания


Наши дополнительные сервисы и сайты:

Схемы и конструкция электрооборудования бензиновых и дизельных двигателей

e-mail:
office@matrixplus.ru
tender@matrixplus.ru

icq:
613603564

skype:
matrixplus2012

телефон
+79173107414
+79173107418

г. С аратов

Статистика

В курсе «Электрооборудование двигателей внутреннего сгорания» изучается комплекс электрической аппаратуры, устанавливаемой на карбюраторных двигателях и дизелях. В результате изучения предмета учащиеся должны освоить устройство и работу приборов электрооборудования двигателей внутреннего сгорания, уметь хорошо разбираться в монтажных схемах и получить навыки по определению дефектов и устранению неисправностей в электрических системах пуска, зажигания, автоматизации и контроля за работой двигателей различных типов.

Область применения электрической энергии на двигателях внутреннего сгорания непрерывно расширяется, а используемое при этом электрооборудование совершенствуется.
Электрическая энергия на двигателях внутреннего сгорания обеспечивает их пуск, зажигание рабочей смеси, работу контрольно-измерительных приборов и другой аппаратуры.
Вместо генераторов постоянного тока большое распространение получают генераторы переменного тока, более надежные и долговечные в эксплуатации.
Совершенствуется конструкция и технология изготовления кислотных аккумуляторных батарей, которые становятся более компактными и менее подверженными сульфатации.
Существенно изменяется конструкция реле-регуляторов. Разрабатываются и внедряются транзисторные реле-регуляторы, количество контактных соединений в которых сведено к минимуму. Начинают находить применение в электронных системах зажигания полупроводниковые приборы.
Для обеспечения надежности пуска применяют совершенные стартеры с дистанционным включением и безударным введением шестерни в зацепление с зубчатым венцом маховика.
Двигатели внутреннего сгорания оснащаются также совершенной контрольно-измерительной аппаратурой и приборами автоматики.
В последние годы промышленностью освоен выпуск автоматизированных дизельных электроагрегатов различных мощностей, у которых пуск, обслуживание и остановка полностью или частично автоматизированы. С повышением количества различных приборов электрического оборудования, применяемого на двигателях внутреннего сгорания, повышается и их качество. Хоть данные и устарели, но принципы остались, если знаешь теорию, с практикой справишься.

Принципиальные схемы электрооборудования двигателей внутреннего сгорания

Генераторы и реле-регуляторы

Электрические стартеры и схемы пуска двигателей внутреннего сгорания

Зажигание от магнето

Автоматизация силовых установок с двигателями внутреннего сгорания

Схемы электрооборудования двигателей внутреннего сгорания

Эксплуатация электрооборудования двигателей внутреннего сгорания


форсунок в ультразвуковых ваннах и на стендах

Дезинфицирующие средства

широкого применения

для дезинфекции на объектах железнодорожного транспорта, пищевой промышленности, ЛПУ, ветеринарного надзора

Моющие средства

для железнодорожного транспорта, сертифицированные ВНИИЖТ- «Фаворит К» и «Фаворит Щ», внутренняя и наружная замывка вагонов.

Виды, устройство и принцип работы системы зажигания

Система зажигания двигателя – это комплекс устройств, приборов и датчиков, необходимых для его запуска. Ее главной задачей является создание высокого напряжения для формирование искры, воспламеняющей топливовоздушную смесь, в точно определенный момент времени. Это обеспечивает правильный режим работы мотора, а потому от исправности системы зажигания зависит расход топлива, мощность и безопасность движения автомобиля.

Устройство и принцип действия типовой системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя. Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Виды систем зажигания

В современном автомобилестроении системы зажигания классифицируют в зависимости от способа управления процессом. При этом выделяют три основных типа схем:

  • контактная (контактно-транзисторная);
  • бесконтактная (транзисторная);
  • электронная (микропроцессорная).

Характерные особенности контактной системы

Исторически контактная система является одной из первых и сегодня ее можно встретить лишь на старых моделях автомобилей. В таких конструкциях формирование высокого напряжения происходит в трансформаторной катушке, а распределение его на свечи реализуется механическим способом – замыканием и размыканием контактов цепи прерывателем-распределителем.

Устройство контактной системы зажигания

Помимо основных элементов, такие системы включают в себя центробежный регулятор опережения зажигания, необходимый для преобразования угла опережения зажигания относительно частоты вращения коленвала. Он представляет собой два груза, воздействующих на мобильную пластину, контактирующую с кулачковым механизмом прерывателя.

Угол опережения зажигания – определенное положение коленвала, при котором осуществляется подача высокого напряжения на свечи. В таком режиме зажигание происходит до момента достижения поршнем верхней мертвой точки, что позволяет обеспечить максимально эффективное сгорание топливовоздушной смеси.

Также в контактных схемах применяется вакуумный регулятор опережения зажигания, изменяющий угол опережения соответственно режиму работы (нагрузке) мотора. Он соединен с полостью, находящейся за дроссельной заслонкой, и при нажатии на педаль газа изменяет угол опережения в зависимости от величины разрежения.

При замыкании контактов низкое напряжение подается на первичную обмотку катушки, где аккумулируется энергия и в момент размыкания контакта происходит формирование высокого напряжения на вторичной обмотке. Затем энергия поступает к распределителю зажигания и далее на соответствующую свечу.

Если нагрузка на силовой агрегат повышается, увеличивается частота вращения вала прерывателя-распределителя, и грузы центробежного регулятора расходятся, изменяя положение пластины. Это способствует более раннему размыканию контактов, что увеличивает угол опережения. При снижении нагрузки на двигатель происходит обратный процесс.

В чем отличия контактно-транзисторной системы зажигания

Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

Контактно-транзисторная система зажигания

За счет установки транзистора напряжение, поступающее на свечи, больше, чем в классической контактной системе на 30%. Зазор между электродами и, как следствие, длина искры при этом также больше, а значит возрастает и площадь контакта с топливовоздушной смесью, что способствует ее полному сгоранию. В контактно-транзисторной системе зажигания прерыватель воздействует не на катушку, а на коммутатор.

При повороте ключа через транзистор начинают проходить два типа токов:

  • управления;
  • основной ток первичной обмотки.

Когда контакты размыкаются, ток цепи управления исчезает, а транзистор запирается, препятствуя протеканию тока первичной обмотки. В этот момент магнитное поле формирует высокое напряжение на вторичной обмотке. Для ускорения запирания транзистора в контактной системе зажигания этого типа может устанавливаться импульсный трансформатор.

Принцип работы бесконтактной системы

Эволюционным продолжением транзисторно-контактной системы, является бесконтактное зажигание. В таких конструкциях вместо прерывателя устанавливается специальный датчик импульсов. Это дает возможность увеличить срок службы системы зажигания за счет отсутствия неисправностей, связанных с контактами прерывателя.

Датчик формирует электрические импульсы низкого напряжения. Он бывает трех типов:

  • Датчик Холла. Конструкция такого датчика включает в себя постоянный магнит, и пластину-полупроводник, оснащенную микросхемой.
  • Индуктивный. Принцип его работы основан на изменении величины индукции чувствительного элемента в зависимости от величины зазора между датчиком и движущимся пластинчатым ротором, воздействующим на магнитное поле.
  • Оптический. Он состоит из светодиода, фототранзистора и микросхемы согласования. При попадании света от диода на фототранзистор датчик подает массу (минус питания) на коммутатор. Перекрытие потока света провоцирует исчезновение тока в катушке и способствует дальнейшему формированию искры.

Конструктивно датчик импульсов интегрирован в распределитель и регулируется режимом вращения коленвала двигателя. Прерывание тока в первичной обмотке катушки зажигания бесконтактной системы осуществляется также транзисторным коммутатором, но реагирующим на сигналы датчика.

В момент вращения коленвала датчик посылает импульсы напряжения на коммутатор. Последний, соответственно, формирует импульсы тока в обмотке низкого напряжения катушки. Когда ток не поступает, на вторичной обмотке возникает высокое напряжение, которое передается распределителю и далее по высоковольтным проводам к нужной свече. Изменение угла опережения в бесконтактной системе зажигания также выполняется центробежным и вакуумным регуляторами.

Электронная и микропроцессорная системы

Самой современной системой считается электронная. Она не имеет механических контактов, а потому ее также можно назвать бесконтактной. Электронное зажигание является частью системы управления двигателем.

Электронная система зажигания

Выделяют два типа электронных бесконтактных систем зажигания:

  • С распределителем. В подобной схеме применяется механический распределитель зажигания, подающий высокое напряжение на заданную свечу.
  • Прямого зажигания. При такой схеме высокое напряжение поступает к электродам свечи напрямую с катушки.

Помимо базовых элементов электронная система зажигания включает:

  • Входные датчики. Они регистрируют данные о текущем режиме работы мотора и подают их в виде электронных сигналов блоку управления.
  • Электронный блок управления. Он выполняет обработку сигналов и передает соответствующие команды на воспламенитель.
  • Исполнительное устройство, или воспламенитель. Фактически является транзисторной платой, обеспечивающей в открытом режиме поступление напряжения на первичную обмотку, а в закрытом – отсечку и формирование высокого напряжения на вторичной обмотке катушки.

Такие системы могут оснащаться одной общей (в конструкциях с распределителем), индивидуальными (при подаче энергии прямо на свечу) или сдвоенными катушками зажигания.

Разновидностью электронной системы является микропроцессорная. В ней применяется целый комплекс датчиков, сигналы которых обрабатываются ЭБУ. Он рассчитывает оптимальный режим работы системы в заданный момент времени. Преимуществами такой конструкции является снижение расхода топлива и улучшение динамических характеристик автомобиля.

Читайте также:  Для чего нужна сварка при ремонте автомобиля
Оцените статью