Автомобиль колеса движутся по окружности

Автомобиль колеса движутся по окружности

Гоночный автомобиль едет по треку, имеющему на повороте радиусом R = 100 м угол наклона полотна дороги к горизонту α = 15° внутрь поворота. С какой максимальной скоростью V может двигаться автомобиль, чтобы не заскользить и не вылететь с трека? Коэффициент трения колёс автомобиля о дорогу μ = 0,9. Ответ выразите в км/ч.

1. Введем неподвижную декартову систему координат с горизонтальной осью ОX, направленной вдоль радиуса к центру закругления трека, и вертикальной осью OY. Начало координат поместим в точке нахождения автомобиля в данный момент времени, когда он движется вдоль трека перпендикулярно плоскости ХОY со скоростью V.

2. На автомобиль массой m при максимальной скорости прохождения поворота действуют силы тяжести mg, нормального давления N и максимальная сила сухого трения, равная μN (см. рисунок), что обеспечивает его движение по окружности радиусом R с центростремительным ускорением, равным V 2 /R.

3. Запишем уравнения второго закона Ньютона в проекциях на координатные оси:

и

и

4. Таким образом, максимальная скорость прохождения поворота равна

Ответ:

Физика автомобиля для игр.

Автор: Marco Monster

Введение

Эта статья рассказывает о поведении автомобилей в играх, а именно о физике автомобиля.

Одним из ключевых пунктов в упрощении физики транспортного средства является раздельная обработка продольной и боковой силы. Продольная сила работает в направлении корпуса автомобиля (или же в противоположном направлении). Это сила тяги, тормозящая сила, сила трения и сила сопротивления перемещению (= сопротивление воздуха). Вместе эти силы управляют ускорением или замедлением автомобиля, следовательно, и скоростью автомобиля. Боковые силы позволяют автомобилю поворачиваться. Эти силы вызваны поперечным трением на колесах. Мы также рассмотрим угловой момент скорости автомобиля и момент вращения, вызванные боковыми силами.

Примечание и соглашения

Векторы выделены полужирным текстом, мы будем использовать 2d векторы. Так что примечание a = —b означало бы следующее:

На протяжении все этой статьи я буду предполагать, что задние колеса являются ведущими (для четырех ведущих колес нужно применять необходимую адаптацию)

Все физические величины я буду измерять в единицах СИ (метры, килограммы, Ньютоны и т.д.).

Физика движения по прямой

Сначала рассмотрим автомобиль, двигающийся по прямой линии. Какие силы задействованы здесь? Прежде всего, это сила тяги, то есть сила, которая передается двигателем через задние колеса. Двигатель вращает колеса вперед (на самом деле он передает момент вращения на колеса), колеса «толкают назад» поверхность дороги, в результате поверхность дороги выталкивает колеса в противоположном направлении, то есть вперед. Сейчас мы просто положим, что сила тяги эквивалентна по величине переменной Engineforce, которая управляется непосредственно пользователем.

Ftraction = u * Engineforce,
где u — единичный вектор в направлении движения автомобиля.

Если бы это была единственная сила, то автомобиль просто бы ускорился до бесконечной скорости. Ясно, что в реальной жизни дело обстоит совсем не так. Введем силы сопротивления. Первая и обычно наиболее важная — сила воздушного сопротивления, другими словами аэродинамическое сопротивление. Эта сила важна, поскольку она пропорциональна квадрату скорости. Когда мы двигаемся быстро (а какая игра не вовлекает в высокие скорости?) эта сила становится наиболее важной силой сопротивления.

Читайте также:  Замок для колес автомобиля

Fdrag = — Cdrag * v * |v|
где Cdrag константа, v — вектор скорости и |v| — модуль вектора v, являющийся длиной вектора v.

Длина вектора скорости обычно известна как скорость. Обратите внимание на различие типа данных: скорость — скаляр, скорость — вектор. Используйте приблизительно следующий код:

Так же, еще есть сопротивление вращения. Это вызвано трением между резиной и дорожной поверхностью, так как колеса прокручиваются, трением на осях и т.д. Мы обозначим это силой, которая пропорциональна скорости, с использованием другой константы.

При низких скоростях трение (Frr) является основной силой сопротивления, при высоких скоростях Fdrag превышает по значению Frr. Приблизительно при 100 км/час (60 миль в час, 30 м/с) они равны ([Zuvich]). Это означает, что Crr должен быть равен приблизительно 30-ти Cdrag.

Общая продольная сила — это векторная сумма этих трех сил.

Обратите внимание, что если вы двигаетесь по прямой линии, то силы аэродинамического сопротивления и трения будут направлены противоположно силе тяги (Ftraction). То есть вы вычитаете силу аэродинамического сопротивления из силы сцепления. И когда автомобиль движется с постоянной скоростью, то силы находятся в равновесии, и Flong равен нулю.

Ускорение (a) автомобиля (в м/с 2 ) определено равнодействующей силой автомобиля (в Ньютонах) и массой автомобиля М (в килограммах) по второму закону Ньютона:

Скорость автомобиля (в метрах в секунду) определяется, как интеграл ускорения через какое-то время (dt). Это звучит слишком сложным, но следующее уравнение поможет нам. Воспользуемся методом Эйлера для численного интегрирования.

v = v + dt * a,
где dt — промежуток времени между предыдущим и текущим вызовами просчета физики.

Позиция автомобиля свою очередь определяется, как интеграл скорости по dt.

Используя эти три силы, мы уже довольно точно можем моделировать ускорение автомобиля. Вместе они также определяют максимальную скорость автомобиля для данной мощности двигателя. То есть, нет необходимости устанавливать максимальную скорость где-нибудь в коде, она автоматически вычисляется из уравнений. Дело в том, что уравнения формируют своего рода цикл отрицательной обратной связи. Если сила тяги (Ftraction) превышает все другие силы, то автомобиль ускоряется. Увеличивающаяся скорость, также заставляет увеличиваться силы сопротивления. Равнодействующая сила уменьшается, а следовательно уменьшается и ускорение. В некоторой точке силы сопротивления и сила тяги компенсируют друг друга, и автомобиль достигает своей максимальной скорости для данной мощности двигателя.

На этом графике Ось X обозначает скорость автомобиля в метрах в секунду и значения силы, которая отмечена по Оси Y. Значение силы тяги (темно синий) установлено произвольно, оно не зависит от скорости автомобиля. Трение (пурпурная линия) — линейная функция скорости, и сопротивление (желтая кривая) — квадратичная функция скорости. При низких скоростях трение превышает аэродинамическое сопротивление. При 30 м/с эти две функции пересекаются. При более высоких скоростях аэродинамическое сопротивление является наибольшей силой сопротивления. Сумма из двух сил сопротивления показана светло-синей кривой. При 37 м/с эта кривая пересекает горизонтальную линию силы тяги. Это — максимальная скорость для данной мощности автомобиля (37 м/с = 133 км/час = 83 мили в час).

Читайте также:  Количество основных частей автомобиля

Парадокс колеса

На приведённом рисунке хорошо видно, что все точки расположенные на радиусе колеса при совершении им одного оборота занимают те же самые места, на которых они были до начала вращения. Иными словами все точки радиуса колеса за один оборот перемещаются на одно и то же расстояние.

В то же время из школьного курса математики известно, что длина окружности равна:

Если прокатить колесо по поверхности и затем замерить пройденный им путь, то он будет точно соответствовать длине его окружности. Таким образом, две точки колеса: центр вращения и точка на внешней окружности проходят путь точно соответствующий приведённому расчёту. Но вот в отношении меньших радиусов мы приходим к выводу, что траектория их движения противоречит каноническому утверждению.

Так путь пройденный точкой, расположенной на половине радиуса колеса (r = R/2) должен быть равен:

C(r) = пиR, т.е. в половину меньше траектории точки расположенной на внешней окружности.

Но на самом деле она проходит фактически путь вдвое больший.

Соотношение фактически пройденной траектории и фактической дины окружности описываемый соответствующим радиусом растёт с уменьшением радиуса, фактически до бесконечности. Но в точке вращения он вновь возвращается к единице.

Самое удивительное в том, что если вырезать любую внутреннюю часть колеса и измерить его окружность, то она точно будет соответствовать вычисленной по канонической формуле.

Рассмотренный парадокс усиливается в случае, если колесо прокатывается с внешней стороны другой окружности. В этом случае траектория внутренних радиусов становится больше траектории точки на внешнем радиусе. И, наоборот, при прокатывании с внутренней стороны их траектория становится меньше.

Таким образом, можно сделать вывод о том, что траектория точек расположенных на внутренних радиусах колеса зависти не от величины собственного радиуса, а от радиуса внешней окружности. Что при этом происходит с материальными точками колеса расположенных на этих радиусах в пространстве остаётся загадкой.

Единственно разумное объяснение этого феномена предложил Галилей. Он считал, что поскольку фактическая траектория движения внутренних точек значительно больше фактической длины окружности, то точки внутренних радиусов проходят наблюдаемую траекторию с большей скоростью, чем это предписано им физикой [1]:

V = w*R, где w — угловая скорость вращения колеса.

Фактически линейная скорость внутренних точек колеса должна описываться уравнением:

V = n*w*r, где n = R/r
R – внешний радиус колеса;
r – внутренний радиус.

Иными словами линейная скорость точек внутренних радиусов является величиной постоянной и зависит только от внешнего радиуса колеса.

Вывод прямо скажем обескураживающий, но иного разумного объяснения пока ни кто не предложил.

Математически парадокс колеса в интерпретации Галилея описывается следующим уравнением:

dV = w*(R-r), где
dV – изменение скорости движения внутренних точек колеса;
R – внешний радиус колеса;
r – внутренний радиус колеса.
При r = R dV = 0
При r = 0 dV = w*R

Иными словами, изменение скорости точек расположенных на внутренних радиусах колеса меняется пропорционально от 0 на внешнем радиусе до V=w*R в центре вращения колеса. Поэтому ось колеса перемещается в пространстве с той же скоростью, которая соответствует линейной скорости вращающегося движения внешней окружности колеса при его прямолинейном движении. Соответственно такую же скорость имеют и все внутренние точки колеса.

Читайте также:  Слив антифриза с двигателя шкода октавия

С физической точки зрения полученный результат интерпретируется как движение жёсткого стержня, расположенного перпендикулярно направлению линейного движения оси вращения. Если рассмотреть движение такого стержня без привязки его к вращательному движению, то не трудно заметить, что все материальные точки стержня имеют одну и ту же скорость.

Преобразование вращательного движения в линейно-поступательное в данном случае решается методом рычага в рамках курса теоретической механики, которой к сожалению во времена Галилея ещё не существовало.

[1] Очевидно, именно по этому, этот парадокс практически не обсуждается в научной литературе.

Поскольку один из комментаторов так возбудился после прочтения этой статьи, что внёс меня в свои чёрные списки, и у меня нет возможности ему ответить иным путём, поэтому использую материал статьи не по назначению.

Сазонов Сергей 3 сентября 2019 года в 12:54

Писать рецензию на Вашу бредятину «Парадокс колеса» считаю излишним (много чести) — найдите в детском журнале «Квант» за 1975 год статью «ЦИКЛОИДА» . Там — примерно этот круг вопросов. Парадокса нет.
(конец цитаты)

К сожалению, найти указанный журнал в Интернете не смог, поэтому не смог лично ознакомиться со статьёй. Но уже само её название «ЦИКЛОИДА» говорит о том, Сергей Сазонов не видит разницы между прямой и циклоидой. В парадоксе колеса траектория меньшего радиуса разворачивается не в виде циклоиды, а в виде прямой линии. В этом то, как раз, и заключается парадокс. С другой стороны, то, что этим парадоксом интересовались Аристотель, Галилей, и возможно другие, не менее, замечательные умы человечества, говорит о том, что парадокс действительно существовал.
Уничижительное отношение к оппонентам явный признак ограниченной умственной деятельности. Конечно, можно было и не обращать внимание на подобные выпады, но, к сожалению, подобный уровень комментаторов встречается не так уж редко, поэтому считаю необходимым противостоять банальному хамству.

Автомобиль колеса движутся по окружности

Гоночный автомобиль едет по треку, имеющему на повороте радиусом R = 50 м угол наклона полотна дороги к горизонту α = 30° внутрь поворота. С какой максимальной скоростью V может двигаться автомобиль, чтобы не заскользить и не вылететь с трека? Коэффициент трения колёс автомобиля о дорогу μ = 0,8. Ответ выразите в км/ч.

1. Введем неподвижную декартову систему координат с горизонтальной осью ОX, направленной вдоль радиуса к центру закругления трека, и вертикальной осью OY. Начало координат поместим в точке нахождения автомобиля в данный момент времени, когда он движется вдоль трека перпендикулярно плоскости ХОY со скоростью V.

2. На автомобиль массой m при максимальной скорости прохождения поворота действуют силы тяжести mg, нормального давления N и максимальная сила сухого трения, равная μN (см. рисунок), что обеспечивает его движение по окружности радиусом R с центростремительным ускорением, равным V 2 /R.

3. Запишем уравнения второго закона Ньютона в проекциях на координатные оси:

и

и

4. Таким образом, максимальная скорость прохождения поворота равна

Ответ:

Оцените статью