Асинхронный двигатель с короткозамкнутым ротором схема включения треугольник

Содержание
  1. Электродвигатель асинхронный: схемы звезда треугольник
  2. Электродвигатель асинхронный: устройство
  3. Обозначение и разводка статорных обмоток
  4. Как подключать «звезду» и «треугольник»?
  5. Подключение с учётом технической информации
  6. Трёхфазный асинхронный электродвигатель в сети 220В
  7. Нестандартные клеммники БРНО
  8. Видео включения мотора 380В на 220В
  9. Схемы включения асинхронных электродвигателей. Включение трехфазного электродвигателя в однофазную сеть. Определение фаз.
  10. Схемы присоединения асинхронных электродвигателей к сети
  11. Определение начала и концы фаз обмотки асинхронного двигателя
  12. Включение трехфазного электродвигателя в однофазную сеть без перемотки
  13. Измерение параметров трехфазного асинхронного двигателя при условиях,
  14. Предупреждение повреждения изоляции обмотки статора асинхронного электродвигателя

Электродвигатель асинхронный: схемы звезда треугольник

Главная страница » Электродвигатель асинхронный: схемы звезда треугольник

Электродвигатель асинхронный – электромеханическое оборудование, широко распространённое в различных сферах деятельности, а потому знакомое многим. Между тем, даже учитывая тесную связь асинхронного электродвигателя с народом, редкий «сам себе электрик» способен раскрыть всю подноготную этих приборов. Например, далеко не каждый «держатель пассатижей» может дать точный совет: как соединить обмотки электродвигателя «треугольником»? Или как ставить перемычки схемы соединения обмоток двигателя «звездой»? Попробуем раскрыть эти два простых и одновременно сложных вопроса.

Электродвигатель асинхронный: устройство

Как говаривал Антон Павлович Чехов:

Начать повторение темы электрических асинхронных двигателей логично детальным обзором конструкции. Двигатели стандартного исполнения построены на базе следующих конструктивных элементов:

  • алюминиевый корпус с элементами охлаждения и крепёжным шасси;
  • статор – три катушки, намотанные медным проводом на кольцевой основе внутри корпуса и размещённые противоположно одна другой под угловым радиусом 120º;
  • ротор – металлическая болванка, жёстко закреплённая на валу, вставляемая внутрь кольцевой основы статора;
  • подшипники упорные для вала ротора – передний и задний;
  • крышки корпуса – передняя и задняя, плюс крыльчатка для охлаждения;
  • БРНО – верхняя часть корпуса в виде небольшой прямоугольной ниши с крышкой, где размещается клеммник крепления выводов обмоток статора.

Структура мотора: 1 – БРНО, где размещается клеммник; 2 – вал ротора; 3 – часть общих статорных обмоток; 4 – крепёжное шасси; 5 – тело ротора; 6 – корпус алюминиевый с рёбрами охлаждения; 7 – крыльчатка пластиковая или алюминиевая

Вот, собственно, вся конструкция. Большая часть асинхронных электродвигателей являются прообразом именно такого исполнения. Правда, встречаются иногда экземпляры несколько иной конфигурации. Но это уже исключение из правил.

Обозначение и разводка статорных обмоток

Остаются в эксплуатации ещё достаточно большое число асинхронных электродвигателей, где обозначение статорных обмоток выполнено по устаревшему стандарту.

Таким стандартом предусматривалась маркировка символом «С» и добавлением к нему цифры — номера вывода обмотки, обозначающего её начало либо конец.

При этом цифры 1, 2, 3 – всегда относятся к началу, а цифры 4, 5, 6, соответственно, обозначают концы. Например, маркеры «С1» и «С4» обозначают начало и конец первой статорной обмотки.

Маркировка концевых частей проводников, выводимых на клеммник БРНО: А – устаревшее обозначение, но всё ещё встречающееся на практике; В – современное обозначение, традиционно присутствующее на маркерах проводников новых моторов

Современные стандарты изменили эту маркировку. Теперь отмеченные выше символы заменены другими, соответствующими международному образцу (U1, V1, W1 – начальные точки, U2, V2, W2 – концевые точки) и традиционно встречаются при работе с асинхронными движками нового поколения.

Проводники, исходящие от каждой из обмоток статора, выводятся в область клеммной коробки, что находится на корпусе электродвигателя и подключаются к индивидуальной клемме.

В общей сложности количество индивидуальных клемм равно числу выведенных начальных и конечных проводов общей намотки. Обычно это 6 проводников и такое же число клемм.

Таким выглядит клеммник движка стандартной конфигурации. Шесть выводов соединяются латунными (медными) перемычками перед подключением мотора под соответствующее напряжение

Между тем, встречаются также вариации развода проводников (редко и обычно на старых моторах), когда в область БРНО выведены 3 провода и присутствуют только 3 клеммы.

Как подключать «звезду» и «треугольник»?

Подключение асинхронного электродвигателя с выведенными на клеммную коробку шестью проводниками, выполняется стандартной методикой с помощью перемычек.

Размещая должным образом перемычки между индивидуальными клеммами, легко и просто установить необходимую схемную конфигурацию.

Так, чтобы создать интерфейс для подключения «звездой», следует начальные проводники обмоток (U1, V1, W1) оставить на индивидуальных клеммах одиночными, а клеммы концевых проводников (U2, V2, W3) соединить между собой перемычками.

Схема соединения «звезда». Отличается высокой потребностью линейного напряжения. Даёт плавный ход ротора в режиме запуска

Если же потребуется создать схему соединения «треугольник», вариант размещения перемычек изменяется. Для соединения статорных обмоток треугольником нужно соединить начальные и концевые проводники обмоток по следующей схеме:

  • начальная U1 – концевая W2
  • начальная V1 – концевая U2
  • начальная W1 – концевая V2

Схема соединения «треугольник». Отличительная черта – высокие пусковые токи. Поэтому зачастую моторы по этой схеме предварительно запускаются на «звезде» с последующим переводом в рабочий режим

Подключение для обеих схем, конечно же, предполагается в трёхфазную сеть с напряжением 380 вольт. Особой разницы при выборе того или иного схемного варианта нет.

Однако следует учитывать большую потребность в линейном напряжении для схемы «звезда». Эту разницу, собственно, показывает маркировка «220/380» на технической пластине моторов.

Вариант последовательного соединения «звезда-треугольник» в рабочем режиме видится оптимальным пусковым методом 3-фазного асинхронного электродвигателя переменного тока. Этот вариант часто используется для плавного пуска мотора при малых начальных токах.

Первоначально подключение организуется по схеме «звезды». Затем, через некоторый промежуток времени, моментальным переключением выполняется соединение на «треугольник».

Подключение с учётом технической информации

Каждый асинхронный электродвигатель обязательно оснащается металлической пластиной, которая закреплена на боковине корпуса.

Такая пластина является своего рода панелью-идентификатором оборудования. Здесь размещается вся необходимая информация, требуемая для корректной установки изделия в сеть переменного тока.

Техническая пластина на боковине корпуса движка. Здесь отмечаются все важные параметры, требуемые для обеспечения нормальной работы электродвигателя

Этими сведениями не следует пренебрегать, включая мотор в цепь питания электрическим током. Нарушения условий, отмеченных на информационной пластине – это всегда первые причины выхода моторов из строя.

Что указывается на технической пластине асинхронного электродвигателя?

  1. Тип мотора (в данном случае – асинхронный).
  2. Число фаз и рабочая частота (3Ф / 50 Гц).
  3. Схема включения обмоток и напряжение (треугольник/звезда, 220/380).
  4. Рабочий ток (на «треугольнике» / на «звезде»)
  5. Мощность и число оборотов (кВт / об. мин).
  6. КПД и COS φ (% / коэффициент).
  7. Режим и класс изоляции (S1 – S10 / А, В, F, H).
  8. Производитель и год выпуска.

Обращаясь к технической пластине, электрик уже предварительно знает на каких условиях допустимо включать мотор в сеть.

С точки зрения подключения «звездой» или «треугольником», как правило, существующая информация даёт электрику знать, что в сеть 220В корректно подключение «треугольником», а на линию 380В асинхронный электродвигатель следует включать «звездой».

Испытывать мотор либо эксплуатировать следует только при условии разводки через защитный автоматический выключатель. При этом внедряемый в цепь асинхронного электродвигателя автомат следует корректно подбирать по току отсечки.

Трёхфазный асинхронный электродвигатель в сети 220В

Теоретически и практически тоже, асинхронный электродвигатель, рассчитанный на подключение к сети через три фазы, может работать в однофазной сети 220В.

Читайте также:  Как собрать лего машину простую

Как правило, этот вариант актуален лишь для моторов мощностью не выше 1,5 кВт. Объясняется сие ограничение банальным дефицитом ёмкости дополнительного конденсатора. На большие мощности требуется ёмкость под высокие напряжения, измеряемая сотнями мкФ.

Применяя конденсатор, можно организовать работу трёхфазного двигателя в сети 220 вольт. Однако при этом теряется практически половина полезной мощности. Уровень КПД снижается до 25-30%

Действительно, самый простой способ запуска трёхфазного асинхронного электродвигателя в однофазной сети 220-230В, это исполнение соединения через так называемый пусковой конденсатор.

То есть из трёх существующих клемм две объединяются в одну включением между ними конденсатора. Образованные таким образом две сетевых клеммы присоединяются к сети 220В.

Переключением сетевого провода на клеммах с подключенным конденсатором можно изменять направление вращения вала мотора.

Включением в трёхфазный клеммник конденсатора, схема подключения трансформируется в двухфазную. Но для чёткой работоспособности двигателя требуется мощный конденсатор

Номинальная ёмкость конденсатора рассчитывается по формулам:

Сзв = 2800 * I / U

C тр = 4800 * I / U

где: C – искомая ёмкость; I – пусковой ток; U – напряжение.

Однако простота требует жертв. Так и здесь. При подходе к решению задачи пуска с помощью конденсаторов отмечается существенная потеря мощности мотора.

Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости (50-100 мкФ) с рабочим напряжением не менее 400-450В. Но даже в этом случае удаётся набрать мощность не более 50% от номинала.

Поскольку подобные решения используются чаще всего для асинхронных электродвигателей, которые предполагается запускать и отключать с частой периодичностью, логично применять схему, несколько доработанную по сравнению с традиционным упрощённым вариантом.

Схема для организации работы в сети 220 вольт с учётом частых включений и отключений. Применение нескольких конденсаторов позволяет в какой-то степени компенсировать потери мощности

Минимум потерь мощности даёт схема включения «треугольником» в отличие от схемы «звезды». Собственно, на этот вариант указывает и техническая информация, что размещается на технических пластинах асинхронных движков.

Как правило, на бирке именно схема «треугольника» соответствует рабочему напряжению 220В. Поэтому на случай выбора способа соединения, прежде всего, следует взглянуть на табличку технических параметров.

Нестандартные клеммники БРНО

Изредка встречаются конструкции асинхронных электродвигателей, где БРНО содержит клеммник на 3 вывода. Для таких моторов применяется схема разводки внутреннего исполнения.

То есть, та же «звезда» либо «треугольник» схематично выстраиваются соединениями непосредственно в области расположения статорных обмоток, куда доступ затруднён.

Вид нестандартного клеммника, какие могут встречаться на практике. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине

Конфигурировать такие движки как-то иначе, в бытовых условиях не представляется возможным. Информация на технических табличках движков с нестандартными клеммниками обычно указывает схему внутреннего развода «звезда» и напряжение, при котором допустимо эксплуатировать электродвигатель асинхронного типа.

Видео включения мотора 380В на 220В

Видеороликом ниже демонстрируется, каким образом допустимо включить электрический двигатель с обмоткой под напряжение 380 вольт к сети с напряжением 220 вольт (бытовая сеть). Такая потребность — частое явление в бытовой практике.

Схемы включения асинхронных электродвигателей. Включение трехфазного электродвигателя в однофазную сеть. Определение фаз.

Схемы присоединения асинхронных электродвигателей к сети

Схемы присоединения односкоростных асинхронных электродвигателей с короткозамкнутым ротором

Асинхронные электродвигатели с короткозамкнутым ротором до 11 кВт включительно имеют три выводных конца во вводном устройстве и зажим заземления. Обмотки этих двигателей соединены в звезду или треугольник и предназначены для включения на одно из стандартных напряжений.

Двигатели мощностью от 15 до 400 кВт имеют шесть выводных концов во вводном устройстве и зажим заземления. Эти двигатели могут включаться на напряжения 220/380 или 380/660 В. Схемы включения обмоток показаны на рис. 11.

Рис. 11. Схемы включения односкоростного двигателя на напряжения 220/380 или 380/660 В: а — звезда (высшее напряжение); б — треугольник (низшее напряжение)

Схемы присоединения многоскоростных асинхронных электродвигателей с короткозамкнутым ротором

Многоскоростные асинхронные электродвигатели отличаются от односкоростных только обмотками статора и пазами ротора. Число частот вращения может быть две, три или четыре. Например, в серии 4А предусмотрены многоскоростные двигатели со следующими соотношениями частот вращения: 3000/1500, 1500/1000, 1500/750, 0/500, 0/750, 3000/1500/1000, 3000/1500/750,

1500/1000/750, 3000/1500/1000/750, 1500/1000/750/500 об/мин.

Схемы соединений обмоток двухскоростных двигателей показаны на рис. 12 и 13, схемы присоединения четырехскоростных двигателей — на рис. 14.

Двухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с соотношением частот вращения 1:2 выполняется по схеме Даландера и соединяется:

— в треугольник () при низшей частоте вращения;

— в двойную звезду () при высшей частоте вращения.

Рис. 12. Схемы соединений обмоток двухскоростных двигателей: а — / . Низшая скорость — : 1В, 2В, 3В — свободны, на 1Н, 2Н, 3Н подается напряжение. Высшая скорость — . 1Н, 2Н, 3Н — замкнуты между собой, на 1В, 2В, 3В подается напряжение; б — / с дополнительной обмоткой. Низшая скорость — с дополнительной обмоткой, 1B, 2B, 3В — замкнуты между собой: на 1Н, 2Н, 3Н подается напряжение. Высшая скорость — : Ш, 2Н, 3Н — свободны, на 1B, 2B, 3В подается напряжение; в — . Низшая скорость: 1В, 2В, 3В — свободны, на 1Н, 2Н, 3Н подается напряжение. Высшая скорость: 1Н, 2Н, 3Н — свободны, на 1B, 2B, 3В подается напряжение.

Рис. 13. Схема присоединений двухскоростных двигателей с соотношением скоростей 2:3 и 3:4: а — / без дополнительной обмотки; б — / с дополнительной обмоткой; в —

Рис. 14. Схема присоединений четырехскоростных двигателей

Обмотки двухскоростных двигателей с соотношением частот вращения 2:3 и 3:4 соединяются:

— либо в тройную звезду;

— либо в треугольник — двойную звезду без дополнительной обмотки или с дополнительной обмоткой.

Трехскоростные двигатели имеют две независимые обмотки, одна из которых выполняется по схеме Даландера и соединяется по схеме / . Число выводных концов трехскоростного двигателя — девять.

Четырехскоростные двигатели имеют две полюсопереключаемые независимые обмотки, выполненные по схеме Даландера, с 12 выводными концами. При включении в сеть одной из обмоток вторая обмотка остается свободной.

Определение начала и концы фаз обмотки асинхронного двигателя

Напряжения сети и схемы статорных обмоток электродвигателя

Если в паспорте электродвигателя указано, например, 220/380 В, это означает, что электродвигатель может быть включен:

— в сеть 220 В (схема соединения обмоток — треугольник);

— в сеть 380 В (схема соединения обмоток — звезда).

Статорные обмотки асинхронного электродвигателя имеют шесть концов.

По ГОСТу обмотки асинхронного двигателя (рис. 15) имеют следующие обозначения:

I фаза — С1 (начало), С4 (конец);

II фаза — С2 (начало), С5 (конец);

III фаза — С3 (начало), С6 (конец).

Если в сети напряжения равно 380 В, то обмотки статора двигателя должны быть соединены по схеме «звезда». В общую точку собраны или все начала (С1, С2, С3), или все концы (С4, С5, С6). Напряжение 380 В приложено между концами обмоток АВ, ВС, СА. На каждой фазе, то есть между точками 0 и А, 0 и В, 0 и С, напряжение будет в раз меньше: 380/ =220 В.

Читайте также:  Устройство воздухоочистителя дизельного двигателя

а — в звезду; б — в треугольник; в — исполнение схем «звезда» и «треугольник» на доске зажимов
» >

Рис. 15. Схема подключения обмоток асинхронного двигателя: а — в звезду; б — в треугольник; в — исполнение схем «звезда» и «треугольник» на доске зажимов

Если в сети напряжение 220 В (при системе напряжений 220/127 В, что в настоящее время, не встречается) обмотки статора двигателя должны быть соединены по схеме «треугольник».

В точках А, В и С соединяются начало (Н) предыдущей с концом (К) последующей обмотки и с фазой сети (рис. 15, б). Если предположить, что между точками А и В включена I фаза, между точками В и С — II, а между точками С и А — III фаза, то при схеме «треугольник» соединены: начало I (С1) с концом III (С6), начало II (С2) с концом I (С4) и начало III (С3) с концом II (С5).

У некоторых двигателей концы фаз обмотки выведены на доску зажимов. По ГОСТу, начала и концы обмоток выводят в том порядке, как эго показано на рис. 15, в.

Если теперь необходимо соединить обмотки двигателя по схеме

«звезда», зажимы, на которые выведены концы (или начала), замыкают между собой, а к зажимам двигателя, на которые выведены начала (или концы), присоединяют фазы сети.

При соединении обмоток двигателя в «треугольник» соединяют зажимы по вертикали попарно и к перемычкам присоединяют фазы сети. Вертикальные перемычки соединяют начало I с концом III фазы, начало II с концом I фазы и начало III с концом II фазы.

Определение согласованных выводов (начал и концов) фаз статорной обмотки

Рис. 16. Определение фазных обмоток при помощи контрольной лампы

На выводах статорных обмоток двигателя обычно имеются стандартные обозначения на металлических обжимающих кольцах. Однако эти обжимающие кольца теряются и возникает необходимость определить согласованные выводы. Это выполняют в такой последовательности.

Сначала при помощи контрольной лампы определяют пары выводов, принадлежащих отдельным фазным обмоткам (рис. 16).

К зажиму сети 2 подключают один из шести выводов статорной обмотки двигателя, а к другому зажиму сети 3 подключают один конец контрольной лампы. Другим концом контрольной лампы поочередно касаются каждого из остальных пяти выводов статорных обмоток до тех пор, пока лампа не загорится.

Примечание. Если лампа загорелась, значит, два вывода, присоединенные к сети, принадлежат одной фазе. Необходимо следить при этом, чтобы выводы обмоток не замыкались друг с другом.

Каждую пару выводов помечают (например, завязав ее узелком).

Определив фазы статорной обмотки, приступают ко второй части работы — определению согласованных выводов или «начал» и «концов». Эта часть работы может быть выполнена двумя способами.

1. Способ трансформации. В одну из фаз включают контрольную лампу. Две другие фазы соединяют последовательно и включают в сеть на фазное напряжение.

Если эти две фазы оказались включенными так, что и точке 0 условный «конец» одной фазы соединен с условным «началом» другой (рис. 17, а), то магнитный ноток ∑Ф пересекает третью обмотку и индуктирует в ней ЭДС.

Лампа укажет наличие ЭДС небольшим накалом. Если накал незаметен, то следует применить в качестве индикатора вольтметр со шкалой до 30–60 В.

Рис. 17. Определение начал и концов в фазных обмотках двигателя методом трансформации: а — две фазы оказались включенными так, что и точке 0 условный «конец» одной фазы соединен с условным «началом» другой; б — в точке 0 встретились условные «концы» обмоток; в — схема для определения согласованных выводов третьей обмотки

Если в точке 0 встретятся, например, условные «концы» обмоток (рис. 17, б), то магнитные потоки обмоток будут направлены противоположно друг другу. Суммарный поток будет близок к нулю, и лампа не даст накала (вольтметр покажет 0). В данном случае выводы, принадлежащие какой-либо из фаз, следует поменять местами и включить снова. Если накал у лампы есть (или вольтметр показывает некоторое напряжение), то концы следует пометить. На одни из выводов, которые встретились в общей точке 0, надевают бирку с пометкой Н1 (начало I фазы), а на другой вывод — К3 (или К2).

Бирки К1 и Н3 (или Н2) надевают па выводы, находящиеся в общих узелках (завязанных при выполнении первой части работы) с Н1 и К3 соответственно.

Для определения согласованных выводов третьей обмотки собирают схему, представленную на рис. 17, в. Лампу включают в одну из фаз с уже обозначенными выводами.

2. Способ подбора фаз. Этот способ определения согласованных выводов (начал и концов) фаз статорной обмотки можно использовать для двигателей небольшой мощности — до 3–5 кВт (рис. 18).

После того как определены выводы отдельных фаз, их наугад соединяют в звезду (по одному выводу от фазы подключают к сети, а по одному — соединяют в общую точку) и включают двигатель в сеть. Если в общую точку попали все условные «начала» или все «концы», то двигатель будет работать нормально.

Но если одна из фаз (III) оказалась «перевернутой» (рис. 18, а), то двигатель сильно гудит, хотя и может вращаться (но легко может быть заторможен). В этом случае выводы любой из обмоток наугад (например, I) следует поменять местами (рис. 18, б).

Если двигатель опять гудит и плохо работает, то фазу следует снова включить, как прежде (как в схеме а), но повернуть другую фазу — III (рис. 18, в).

Рис. 18. Определение «начал» и «концов» обмотки методом подбора схемы «звезда»: а — шаг первый; б — шаг второй; в — шаг третий

Если двигатель и после этого гудит, то эту фазу следует также поставить по-прежнему, а повернуть следующую фазу — II.

Когда двигатель станет работать нормально (рис. 18, в), все три вывода, которые соединены в общую точку, следует пометить одинаково, например, «концами», а противоположные — «началами». После этого можно собирать рабочую схему, указанную в паспорте двигателя.

Включение трехфазного электродвигателя в однофазную сеть без перемотки

Трехфазный асинхронный двигатель может работать от однофазной сети:

— как однофазный с пусковым элементом;

— как однофазный конденсаторный с постоянно включенной рабочей емкостью.

Применение двигателя в качестве конденсаторного предпочтительнее. Схемы включения в однофазную сеть трехфазных двигателей с тремя выводами показаны на рис. 19, с шестью выводами на рис. 20.

Рис. 19. Схемы включения в однофазную сеть трехфазных двигателей с тремя выводами: а — схема с пусковым сопротивлением; б, в — схемы с рабочей емкостью

Рис. 20. Схемы включения в однофазную сеть трехфазных двигателей с шестью выводами: а — схема с пусковым сопротивлением; б, в — схемы с рабочей емкостью

Читайте также:  Мотор дворников газель схема подключения

Если принять за % мощность трехфазного двигателя, обозначенную на его щитке, то:

— при однофазном включении двигатель может развить 50–70 % этой мощности;

— при использовании в качестве конденсаторного двигатель может развить 70–85 % и более.

Примечание. Существенное преимущество конденсаторного двигателя заключается в том, что отсутствует специальное пусковое устройство, которое необходимо при однофазной схеме для отключения пусковой обмотки после разгона двигателя.

Схему включения на рис. 19 и рис. 20 надо выбирать с учетом напряжения сети и номинального напряжения двигателя. Например, при трех выведенных концах обмотки статора (рис. 19) двигатель может быть использован в сети, напряжение которой равно номинальному напряжению двигателя.

При шести выводных концах обмотки двигатель имеет два номинальных напряжения: 127/220 В, 220/380 В.

Если напряжение сети равно большему номинальному напряжению двигателя, т. е. Uc = 220 В при номинальном напряжении 127/220 В или Uс = 380 В при номинальном напряжении 220/380 В и т. д., то надо пользоваться схемами, приведенными на рис. 19, а, б.

При напряжении сети равно меньшему номинальному напряжению двигателя, следует применять схему, показанную на рис. 19, в.

Совет. В этом случае при однофазном включении значительно уменьшается мощность двигателя, поэтому целесообразно применять схемы с рабочей емкостью.

Рабочая емкость Ср (мкФ) для каждой схемы должна иметь определенное значение и может быть подсчитана, исходя из напряжения однофазной сети Uc и номинального тока Iф в фазе трехфазного двигателя:

где k — коэффициент, зависящий от схемы включения.

При частоте 50 Гц можно принять для схем:

— по рис. 19, б и рис. 20, б — k = 2800;

— по рис. 19, в — k = 4800;

— по рис. 20, в — k = 1600.

Напряжение на конденсаторе Uk также зависит от схемы включения и напряжения сети для схем:

Примечание. Номинальное напряжение конденсатора должно быть равно или несколько больше расчетного значения.

Внимание. Необходимо помнить, что конденсаторы после отключения длительное время сохраняют напряжение на своих зажимах и создают при прикосновении к ним опасность поражения человека электрическим током. Опасность поражения тем выше, чем больше емкость и выше напряжение на включенном в схему конденсаторе. Поэтому параллельно конденсатору следует установить резистор сопротивлением порядка –510 кОм, для того, чтобы конденсатор смог быстро разрядиться.

При ремонте или отладке двигателя необходимо после каждого отключения конденсатор разрядить. Для защиты от случайного прикосновения в процессе эксплуатации двигателя конденсаторы должны быть жестко закреплены и ограждены.

Пусковое сопротивление Rп определяют опытным путем, используя регулируемое сопротивление (реостат).

Если необходимо получить увеличенный момент при пуске двигателя, то параллельно рабочему конденсатору включают пусковой. Его емкость подсчитывают по формуле:

где Ср — емкость рабочего конденсатора.

Пусковой момент при этом получается близким к номинальному моменту трехфазного двигателя.

Измерение параметров трехфазного асинхронного двигателя при условиях,

отличных от номинальных

Понижение напряжения при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается,

коэффициент мощности увеличивается, скольжение возрастает, а КПД несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения.

При повышении напряжения сверх номинального и номинальной частоте двигатель перегревается из-за увеличения потерь в стали. Вращающий момент двигателя растет, величина скольжения уменьшается. Ток холостого хода увеличивается, а коэффициент мощности ухудшается. Ток статора при полной нагрузке может уменьшиться, а при малой нагрузке может увеличиться вследствие увеличения тока холостого хода.

При уменьшении частоты и номинальном напряжении увеличивается ток холостого хода, что приводит к ухудшению коэффициента мощности. Ток статора обычно возрастает. Увеличиваются потери в меди и стали статора, охлаждение двигателя несколько ухудшается вследствие уменьшения частоты вращения.

При повышении частоты сети и номинальном напряжении уменьшается ток холостого хода и вращающий момент.

Предупреждение повреждения изоляции обмотки статора асинхронного электродвигателя

Причины повреждения обмоток статора асинхронных электродвигателей

Большинство аварий электрических машин связано с повреждением обмотки статора.

Примечание. Высокая повреждаемость обмотки объясняется тяжелыми условиями работы и недостаточной стабильностью электрических свойств изоляционных материалов.

В результате повреждения изоляции может произойти замыкание между:

— обмоткой и магнитопроводом;

— витками катушек или между фазными обмотками.

Основной причиной повреждения изоляции является резкое снижение электрической прочности под влиянием:

— загрязнения поверхности обмотки;

— попадания в электродвигатель металлической стружки токопроводящей пыли;

— наличия в охлаждающем воздухе паров различных жидкостей;

— продолжительной работы электродвигателя при повышенной температуре обмотки;

— естественного старения изоляции.

Увлажнение обмотки может произойти вследствие продолжительного хранения или эксплуатации электродвигателя в сыром неотапливаемом помещении. В установленном электродвигателе увлажнение может произойти при длительном неподвижном состоянии, особенно при повышенной влажности окружающего воздуха или при попадании воды непосредственно в электродвигатель.

Совет. Для предупреждения увлажнения обмотки во время хранения электродвигателя необходимы хорошая вентиляция складского помещения и умеренное отапливание в холодное время года. В периоды длительных остановок электродвигателя при сырой и туманной погоде следует закрывать задвижки воздушных каналов поступающего и выходящего воздуха. При теплой сухой погоде все задвижки должны быть открыты.

Во избежание образования водяной бани недопустимо хранение электродвигателей, укрытых брезентом и другими водонепроницаемыми материалами. Такое хранение допускается в случае установки дистанционирующих прокладок между корпусом электродвигателя и тентом. Необходима также регулярная вентиляция воздушного зазора и осушение воздуха помещений.

Загрязнение обмотки электродвигателя происходит, главным образом, вследствие использования для охлаждения недостаточно чистого воздуха. Вместе с охлаждающим воздухом в электродвигатель могут попадать угольная и металлическая пыль, сажа, пары и капли различных жидкостей. Вследствие износа щеток и контактных колец образуется проводящая пыль, которая при встроенных контактных кольцах оседает на обмотках электродвигателя.

Предотвращение загрязнения может быть достигнуто внимательным уходом за электродвигателем и тщательной очисткой охлаждающего воздуха. Необходимо:

— периодически осматривать электродвигатель;

— очищать его от пыли и грязи;

— в случае необходимости производить мелкий ремонт изоляции.

При повышенном нагревании, а также в результате естественного старения изоляция в значительной мере утрачивает механическую прочность, становится хрупкой и гигроскопичной.

При длительной работе машины крепления пазовых и лобовых частей обмотки ослабляются и вследствие вибрации их изоляция разрушается. Изоляция обмотки может быть повреждена:

— из-за небрежной сборки и транспортировки электродвигателя;

— вследствие разрыва вентилятора или бандажа ротора;

— в результате задевания ротора за статор.

Сопротивление изоляции обмотки статора асинхронных электродвигателей

О состоянии изоляции можно судить по ее сопротивлению. Минимальное сопротивление изоляции зависит: от напряжения U, В; электродвигателя и его мощности Р, кВт.

Сопротивление изоляции обмоток от магнитопровода и между разомкнутыми фазными обмотками при рабочей температуре электродвигателя должно быть не менее 0,5 МОм.

Совет. При температуре ниже рабочей это сопротивление необходимо удваивать на каждые 20°С (полные или неполные) разности между рабочей температурой и той температурой, для которой оно определяется.

Оцените статью