Асинхронные тяговые двигатели устройство

Тяговый асинхронный двигатель.

Основные технические данные двигателя.

Мощность часового режима – 170кВт, частота вращения часового режима – 1290 об/мин, номинальное напряжения питания – 530 В, номинальная частота – 43 Гц, масса – 805 кг.

3-х фазный двигатель, самовентилируемый с короткозамкнутым ротором. Тяговые двигатели, установлены на вагонах 81-740/741, с опорой только на раму тележки, что снижает ударные нагрузки на двигатель при прохождении неровностей и стыков ходовых.

Двигатели могут работать как электродвигателями так и генераторами. В первом случае электрическая энергия, потребляемая от контактной сети (3-ий рельс), преобразуется в механическую, развивая при этом вращающий момент на валу двигателя.

Во втором случае двигатель преобразует, приведенную к валу механическую энергию от вращения колесных пар в электрическую, которая может быть вновь возвращена в контактную сеть (рекуперативное торможение) или гасится на тормозном реостате (сопротивление), при реостатном электрическом торможении.

Асинхронная электрическая машина характеризуется тем, что при ее работе возбуждается вращающее магнитное поле, которое вращается асинхронно относительно скорости вращения ротора.

Устройство тягового двигателя.

Тяговый двигатель состоит из: статора, ротора, двух подшипниковых щитов, вентилятора.

Статор(неподвижная часть) – предназначен для укладки в него обмотки. Имеет форму полого цилиндра, собранного из пластин электротехнической стали, толщиной 0,5мм, изолированных друг от друга слоем лака, что обеспечивает уменьшение потерь от вихревых токов.

Фазные обмотки, которые возбуждают вращающее магнитное поле, размещаются в пазах на внутренней стороне сердечника статора. Обмотка статора подсоединяется к 3-х фазному источнику переменного тока – инвертору.

1,2 отверстия крепления подшипникового щита

3. вылет обмотки

4. отверстие центровки подшипникового щита; 5. обмотка

Ротор (вращающаяся часть) – короткозамкнутый.

Собирается также из штампованных пластин электротехнической стали, определенной конфигурации, в результате чего на внутренней стороне сердечника ротора образуются пазы. В пазы ротора вставляют обмотку, которая изготовляется в виде цилиндрической(беличьей) клетки из медных или алюминиевых стержней. Стержни вставляются без изоляции. Концы стержней замыкают накоротко кольцами, которые изготавливают из того же материала. Обмотка ротора не соединяется с сетью и с обмоткой статора. Ротор насажен на вал тягового двигателя. Вентилятор устанавливается на конце вала ротора со стороны привода. Вал т/д изготавливается из высоколегированной стали. Имеет несколько шеек различной длинны и диаметра для посадки на них подшипниковых щитов, ротора, вентилятора.

1- вентилятор; 2 и 5 – вал; 3 — беличья клетка; корпус статора.

Подшипниковые щиты

Подшипниковые щиты устанавливаются в статор с двух сторон. Подшипники щитов опираются на вал тягового двигателя.

Конструкция асинхронного тягового двигателя

В пазы статора укладывают обмотку, которая в простейшем случае состоит из трех катушек — фаз, сдвинутых в пространстве на 120 эл. градусов. Ротор асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали. На поверхности ротора имеются продольные пазы для обмотки. Листы сердечника ротора специально не изолируют, т.к. в большинстве случаев достаточно изоляции от окалины. В зависимости от типа обмотки роторы двигателей обычного исполнения делятся на короткозамкнутые и фазные.

Обмотка короткозамкнутого ротора представляет собой медные стержни, забитые в пазы. С двух сторон эти стержни замыкаются кольцами. Соединения стержней с кольцами осуществляется пайкой или сваркой. Чаще всего короткозамкнутую обмотку выполняют расплавленным, алюминием и литьем под давлением. При этом вместе со стержнями и кольцами отливаются и лопатки вентилятора.

ПРИНЦИП ОБРАЗОВАНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ МАШИНЫ.

На статоре трехфазного двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты друг от друга во времени на 1/3 периода.

Токи в трехфазной обмотке

Образование вращающегося магнитного поля.

Асинхронные двигатели широко применяются в промышленности. Эти двигатели состоят из двух основных частей: неподвижной – статора и вращающейся – ротора. В асинхронном двигателе переменный трехфазный ток включается в обмотку статора, состоящую из трех самостоятельных частей. Как видно из графика изменений трехфазного тока напряжение достигает максимального значения не одновременно во всех трех фазах, а попеременно, через равные промежутки времени, то в одной, то в другой, то в третьей фазе. Следователь но, если включить такой ток в три обмотки, расположенные так, как это показано на рисунке:

Максимальное значение магнитного потока будет создаваться то в первой, то во второй, то в третьей обмотке, соответственно максимальным значениям тока в фазах, подключенных к этим обмоткам. Магнитное поле, перемещающееся таким образом по замкнутому кругу, называется вращающимся магнитным полем.

Читайте также:  Толщина лкп автомобилей после ремонта

Описанное создание вращающегося магнитного поля поясняется рис. Если подключить фазу к первой катушке обмотки двигателя, фазу 2 ко второй катушке, а фазу 3 к третьей катушке обмотки, то в момент времени t1 максимальный поток будет в первой катушке, так как в это время сила тока в фазе 1, подключенной к первой катушке, будет иметь максимальное значение. Затем сила тока в фазе 1 постепенно ослабевает и, переходя через нуль, меняет направление, в это время увеличивается значение силы тока в фазе 2 и к моменту времени t2 сила тока в фазе 2 достигает максимального значения, поэтому максимальный поток уже создастся не первой катушкой, а второй. Это в свою очередь означает, что магнитное поле повернулось на 120°. К моменту времени t3 максимум тока будет в фазе 3, а максимум потока будет создаваться третьей катушкой — магнитное поле повернулось еще на 120º.

К моменту времени t4 создается такая же картина поля, как и в момент времени t1,т. е. снова максимума ток достигает в фазе 1, а максимальный магнитный поток создается первой катушкой Это значит, что за время t1 t2магнитное поле повернулось на 360° (совершило полный оборот).

Обмотка ротора асинхронного двигателя замкнута на себя, или на сопротивление. При неподвижном роторе и наличии тока в обмотке статора силовые линии вращающегося магнитного ноля пересекают неподвижные витки обмотки ротора, в результате чего в обмотке ротора появляется ЭДС и ток. Этот ток, взаимодействуя с полем статора, создает вращающий момент, стремящийся повернуть ротор в сторону вращения поля. Ротор двигателя начнет вращаться. По мере увеличения скорости ротора уменьшаются число пересекаемых силовых линий и ЭДС и, следовательно, ток ротора асинхронного двигателя. Однако ротор никогда не достигает скорости поля, а всегда вращается. Это отставание ротора от ноля статора называют скольжением. Чем больше нагрузка на валу двигателя, тем больше скольжение. Выражается скольжение в процентах или в относительных единицах.

Обычно асинхронные двигатели имеют при полной нагрузке скольжение 2—4%.

Скорость вращения ротора асинхронного двигателя определяется по формуле:

где n—скорость вращения ротора, об/мин;

f — частота питающей сети;

p— число пар полюсов;

ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ.

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу – Fэм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Частота вращения ротора n2 будет всегда меньше синхронной частоты n1 т.е. ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой п2 равной частоте вращающегося поля статора n1. В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного двигателя принципиально не может вращаться синхронно с полем статора. Разность между частотами поля статора n2 и ротора n1 называется частотой скольжения Δn:

Отношение частоты скольжения к частоте поля называется скольжением:

В общем случае скольжение в асинхронном двигателе может изменяться от нуля до единицы. Однако номинальное скольжение SH обычно составляет от 0,01 до 0,1 %. Преобразуя выражение *), получим выражение частоты вращения ротора:

Обмотка ротора асинхронного двигателя электрически не связана с обмоткой статора. В этом отношении двигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора — вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится не изменяющимся во времени магнитным потоком, а ЭДС в обмотках двигателя — потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора двигателя вместе с ним вращается. ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном двигателе. Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Δn. Она же наводит в обмотке ротора ЭДС Е2, частота которой f2 связана со скольжением S:

Читайте также:  Ремонт мотора отопителя втулки

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при ^=50 Гц).

Устройство асинхронного тягового двигателя. Технические данные.

Асинхронные двигатели для вагонов метрополитена, выпускаемые разными заводами-изготовителями, конструктивно аналогичны, т.к. созданы на основе двигателя ТАД 280М 4У2 производства АЭК «Динамо». Двигатели имеют принципиально одинаковое устройство: габариты, конструкционные

размеры, обмоточные данные и др.

Рис. 6. Тяговые электродвигатели. Общий вид.

Устройство асинхронного тягового двигателя рассмотрим на примере двигателя ДТА 170 У2 производства АО «Рижский электромашинострои-тельный завод» (принципиальные отличия будут отмечены как примечание).

Трехфазные асинхронные тяговые двигатели ДТА 170 У2 предназначе-ны для установки на вагонах метрополитена для приведения вагона в движение и создания тормозной силы при электрическом торможении. Двигатель является составной частью асинхронного тягового электропривода и рассчитан для питания от инвертора напря­жения.

Двигатель ДТА 170 У2 — самовентилируемый четырехполюсный двигатель с короткозамкнутым ротором.

В обозначении двигателя: ДТА — двигатель тяговый асинхронный; 170 –мощность в кВт; У2 – климатическое исполнение и категория размещения.

3.1 Основные параметры двигателя:

Мощность часового режима – 170 кВт

Номинальный режим работы – повторно-кратковременный S2-60 мин.

(с длительностью рабочего периода неизменной нагрузки 60 мин.)

Номинальное линейное напряжение – 530 В

Номинальная частота тока – 43 Гц

Максимальная частота тока– 120 Гц

Номинальный линейный ток — 237 А

Номинальная частота вращения — 1290 об/мин.

Максимальная частота вращения – 3600 об/мин.

Номинальное скольжение – не менее 1,5 %

Перегрузочная способность (Mmaxном) – 3,5

Шаг по пазам обмотки статора 1-12

Масса двигателя – 765 кг.

Двигатель состоит из статора, ротора и двух подшипниковых щитов. Разрез двигателя представлен на рис. 7.

Рис. 7. Двигатель ДТА 170У2. 1 – Станина. 2 – Сердечник. 3 – Обмотка статора. 4 – Стержень обмотки ротора. 5 – Сердечник ротора. 6 – Сегментная шпонка. 7 – Закорачивающее кольцо. 8,9 – Подшипниковый щит. 10 – Вентиляторное колесо. 11 – Вентиляционное отверстие. 12 – Защитная сетка. 13,14 – Подшипник. 15,16 – Крышка подшипника. 17 – Клемная коробка. 18 – Болт сливного отверстия. 19 – Болт заземления. 20 – Корпус установки ДЧВ. 21 – Шестерня ДЧВ. 22 – Вал ротора. 23 – Заглушка. 24 – Устройство добавления смазки.

Статор.

Статор — неподвижная часть двигателя — состоит из станины 1, сердечника 2 и обмотки 3.

Станина 1 статора имеет цилиндрическую форму и отлита из конструкционной стали. Крепление двигателя к тележке вагона осуществляется с помощью кронштейнов, отлитых заодно со станиной. Станина так же имеет приливы, предохраняющие двигатель от падения в случае нарушения целостности крепления. Перемещение двигателя при монтаже осуществляется за транспортировочные отверстия в кронштейнах. Со стороны выходного вала станина имеет вентиляционные отверстия, закрытые сетками 12. Торцевые части станины имеют расточку и резьбовые отверстия для установки переднего 8 и заднего 9 подшипниковых щитов.

К боковой поверхности станины приваривается коробка выводов 17 с тремя отверстиями для подвода кабелей от преобразователя. Для заземления двигателя предусмотрен заземляющий болт 19, который расположен на боковой грани станины со стороны коробки выводов и обозначен табличкой с указа­нием знака заземления. На внутренней поверхности станины имеются

Рис. 8. Установка сердечника в станине.

продольные ребра, образующие аксиальные вентиляционные каналы (рис. 8). Для спуска влаги, появляющейся в процессе

эксплуатации двигателя, в

станине имеются два сливных

отверстия, заглушенные болтами 18. Каждый двигатель, выпускаемый изготовителем, имеет на корпусе табличку с основными техническими данными: тип, заводской номер, масса и дата изготов­ления двигателя.

3.2.2 Сердечник статора.

Рис. 9. Фрагмент листа сердечника статора

Сердечник статора 2 (рис. 7) набран из штампованных изоли-рованных листов электротехни-ческой стали толщиной 0,5 мм и установлен через усиливающие листы в станину между буртом и сегментными шпонками 6, предохраняющими сердечник от осевого смещения. Фрагмент листа сердечника представлен на рис. 9. На внутренней поверхности собранного сердечника образуются углубления (пазы), в которые укладываются секции обмотки 3 (рис. 7).

Читайте также:  Масло для двигателя bmw b57

3.2.3 Обмотка статора.

Обмотка статора двухслойная петлевая, выполнена из 60-ти ромбовидных жестких секций (рис.10). Каждая секция состоит из восьми витков прямоугольного медного эмалированного провода сечением 1,8 х 6,3 мм. Витки изолированы лентой, пропитанной лаком.

Общая изоляция секции выполнена слюдянитовой лентой. Секции уложены шагом 1-12.

Активные части обмотки закреплены в пазах стекло-текстолитовыми изоляцион-ными клиньями. Расположение секций в пазу представлено на рис.11.

Схема обмотки статора представлена на рис. 12. Пунктирной линией показана пазовая часть секции в нижнем слое паза.

Обмотка статора состоит из трех фазных обмоток, которые образованы из четырех катушечных групп (по пять секций в каждой), включенных параллельно.

Рис.11. Расположение проводников обмотки статора в пазу

Соединения секций выполнено пайкой со стороны заднего подшипникового щита. Паяные соединения изолирова-ны. Фазные обмотки глухим соединением включены по схеме «звезда». Выводные концы обмотки крепятся в коробке 17.

Обозначение выводов — U,V, W.

Рис. 12. Схема статорной обмотки.

Ротор.

Подвижная часть двигателя — ротор — состоит из вала 22, сердечника 5 с короткозамкнутой обмоткой и вентиляторного колеса 10.

Вал ротора изготовлен из высокопрочной стали и имеет конический рабочий выходной конец для соединения с тяговой передачей. На валу имеются участки разных диаметров для размещения на них составных частей ротора. В средней части вала имеются выступ (бурт), кольцевая выточка под стопорное кольцо, а так же осевая канавка под шпонку.

3.3.2 Сердечник ротора.

Рис. 13. Фрагмент листа сердечника ротора.

Между буртом и стопорным кольцом посредством шпонки закреплен сердечник 5, представляющий собой пакет штампованных изолированных пластин электротехнической стали толщиной 0,5 мм. В пластинах выштампованы пазы под обмотку, отверстия для установки на вал и вентиляции. Фрагмент пластины и конфигурация паза представлены на рис. 13. Жесткость пакету придают крайние пластины толщиной 5 мм. В собранном виде у поверхности сердечника образу-

ются полузакрытые пазы, а в теле сердечника вентиляционные каналы.

3.3.3 Обмотка ротора.

В пазы сердечника вставляются медные стержни 4 сечением 5,6 х 22 мм, выступающие концы которых замкнуты накоротко медными кольцами 7. При этом образуется короткозамкнутая обмотка, равномерно распределенная по окружности ротора. Электрическое соединение выполнено методом газовой

сварки с медным присадочным материалом. Более поздняя технология предусматривает метод индукционной пайки стержней к кольцам ротора с серебряной присадкой. Такое соединение обеспечивает повышенное качество электрического соединения и надежности машины.

Для обеспечения движения воздуха внутри двигателя на валу ротора установлено вентиляторное колесо 10.

Примечание. Обмотка ротора двигателя ТАДВМ-280 Владимирского завода выполнена методом литья из алюминия, при этом заодно с короткозамыкающими кольцами отлиты вентиляционные лопатки, обеспечивающие движение охлаждающего воздуха.

Подшипниковые щиты.

Подшипниковые щиты — передний 8 и задний 9 — являются опорой подшипников ротора и представляют собой фасонные стальные отливки. Они вставляются расточку станины и закрепляются болтами, ввернутыми в торцевую часть станины.

В подшипниковых щитах установлены однорядные подшипники качения открытого исполнения с токоизолирующим покрытием на наружной обойме. Оно обеспечивает исключение электрической связи вала ротора со статором. Со стороны приводного конца вала установлен роликовый подшипник, с противоположной стороны – упорный шариковый, фиксирующий положение ротора и поглощающий осевое давление от редуктора.

Подшипники закрыты внутренними и наружными крышками 15 и 16. Лабиринтные уплотнения, которыми снабжены крышки, удерживают смазку и защищают подшипники, что обеспечивают увеличение срока службы смазки. В подшипниках применена смазка Литол-24. Конструкция подшипниковых узлов предусматривает возможность пополнения смазки через выведенные наружу трубки.

Задний подшипниковый щит имеет вентиляционные окна 11, которые закрыты крышками с металлическими сетками.

Вентиляция.

По конструкции двигатель является самовентилируемым. Под действием вращающегося вентиляторного колеса наружный воздух поступает через отверстия в подшипниковом щите, обтекает лобовые части обмотки статора как со стороны соединений, так и со стороны привода, а так же сердечники статора и ротора и выбрасывается наружу через вентиляционные отверстия станины со стороны привода. Внутри машины охлаждающий воздух проходит тремя путями:

— по каналам, образованным сердечником статора и внутренними ребрами станины;

— через воздушный зазор между статором и ротором;

— по аксиальным каналам сердечника ротора.

Примечание: Движение охлаждающего воздуха в двигателе ТАДВМ-280 Владимирского завода обеспечивается лопатками на короткозамыкающих кольцах обмотки ротора.

Оцените статью