Асинхронные синхронные машины назначение принцип действия устройства

§86. Назначение и принцип действия синхронной машины

Назначение. Синхронные машины используют в качестве генераторов и двигателей. Синхронные генераторы вырабатывают электрическую энергию трехфазного тока. Почти все генераторы переменного тока, устанавливаемые на больших и малых электрических станциях, являются синхронными. Мощность этих генераторов может быть самая различная, начиная от нескольких киловольт-ампер (на передвижных электростанциях) и кончая несколькими сотнями тысяч киловольт-ампер (на мощных центральных электростанциях). В Советском Союзе создан самый большой в мире синхронный генератор мощностью 1200 тыс. кВ*А. Синхронные двигатели используют, главным образом, для мощных электрических приводов. Синхронные генераторы применяют на тепловозах с электрической передачей переменно-постоянного тока. На этих тепловозах напряжение, полученное от синхронного генератора, выпрямляется полупроводниковыми преобразователями и подается на тяговые двигатели постоянного тока.

Принцип действия. На статоре 2 синхронной машины располагается трехфазная обмотка 1 (рис. 283,а), а на роторе 4 — полюсы (электромагниты) с обмоткой, питаемой постоянным током через контактные кольца 3 и щетки. Обмотка 5 полюсов, создающая магнитный поток возбуждения машины, называется обмоткой

Рис. 283. Электромагнитная схема синхронной машины (а), и схемы ее включения (б и в): 1—трехфазная обмотка статора; 2— ротор; 3— обмотка возбуждения; 4, 5 — обмотки якоря

возбуждения. Статор синхронной машины ничем не отличается от статора асинхронной машины; его обмотка имеет три (в двухполюсной машине), шесть (в четырехполюсной) или большее число катушек, сдвинутых одна относительно другой на соответствующие углы (120° или 60° и т. д.). При вращении ротора 4 с некоторой частотой n поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную э. д. с. Е1, изменяющуюся с частотой

Благодаря тому что обмотки трех фаз синхронного генератора сдвинуты в пространстве на угол 120°, индуцируемые в них э. д. с. будут сдвинуты одна относительно другой по фазе на 1/3 периода. Если к обмотке статора подключить какую-либо нагрузку, то протекающий по этой обмотке трехфазный ток создает вращающееся магнитное поле, частота вращения которого

Из формул (86) и (87) следует, что n = n1, т. е. ротор вращается с той же частотой, что и магнитное поле статора. По этой причине рассматриваемая машина называется синхронной. В такой машине результирующий магнитный поток Фрез создается совместным действием магнитодвижущих сил обмотки возбуждения и обмотки статора и вращается в пространстве с той же частотой вращения, что и ротор.

В синхронной машине обмотка 1 (рис. 283,б), в которой индуцируется э. д. с. и протекает ток нагрузки, называется обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения,— индуктором. Следовательно, в машине, выполненной по схеме, показанной на рис. 283, статор является якорем, а ротор — индуктором. С точки зрения принципа действия и теории работы машины безразлично — вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной электромагнитной схемой: у них обмотка якоря, к которой подключается нагрузка, располагается на роторе, а обмотка возбуждения, питаемая постоянным током,— на статоре.

Обмотка якоря обычно имеет семь выводов: от начал А, В, С и концов X, Y, Z фаз и от нулевой точки 0. Это дает возможность соединять фазы и подключать к ним нагрузку по различным схемам: «звезда», «звезда с нулевым проводом» и «треугольник».

Таким образом, синхронная машина имеет следующие особенности: ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой вращения, равной частоте вращения вращающегося магнитного поля, т. е. n = n1; в обмотке ротора э. д. с. не индуцируется, а магнитное поле создается постоянным током, подводимым от внешнего источника, или постоянными магнитами.

Синхронные генераторы тепловозов с электропередачей переменно-постоянного тока имеют две обмотки якоря 6 и 7 (рис. 283, в), фазы которых OA и О’А’, ОВ и О’В’ и ОС и О’С’ сдвинуты на 30°. Выводы обмоток якоря подключены к полупроводниковому выпрямителю. В результате сдвига фаз обмоток якоря существенно уменьшается пульсация напряжения и тока на выходе выпрямителя, что улучшает работу тяговых двигателей постоянного тока (см. главу III).

Возбуждение синхронной машины. В качестве источника постоянного тока для питания обмотки возбуждения 1 синхронной машины может служить генератор постоянного тока 4 (возбудитель), установленный на валу ротора синхронной машины (рис. 284, а), или полупроводниковый выпрямитель 5, присоединенный к обмотке якоря 2 (рис. 284,б). Питание обмотки возбуждения от полупроводникового выпрямителя все более широко применяется как в двигателях и генераторах небольшой и средней мощности, так и в мощных турбо- и гидрогенераторах. Регули-

Рис. 284. Схемы питания обмотки возбуждения от возбудителя (а) и от полупроводникового выпрямителя (б)

рование тока возбуждения осуществляется вручную регулировочным реостатом 3, включенным в цепь обмотки возбуждения, или автоматически специальными регуляторами. Мощность, необходимая для возбуждения, составляет 0,3—3 % мощности синхронной машины, поэтому возбудитель или выпрямитель имеет малые размеры по сравнению с синхронной машиной.

Назначение и устройство синхронных машин

Синхронная машина — машина переменного тока, у которой скорость ротора при постоянной частоте тока в обмотках статора сохраняется постоянной и не зависит от величины нагрузки на валу машины.

Синхронные машины применяют главным образом для преобразования механической энергии первичных двигателей в электрическую, т е. в качестве генераторов электрической энергии переменного тока. Однако синхронные машины используют также в режимах двигателей, компенсаторов реактивной мощности и других устройств.

Читайте также:  Тест драйв инфинити фикс

В промышленных установках наибольшее распространение получили трехфазные синхронные машины. Однофазные синхронные двигатели нашли применение в электроприводах компрессоров, мощных вентиляторов, двигатели малой мощности в различных автоматических приборах и т. п.

Устройство синхронной машины

Трехфазная синхронная машина состоит из неподвижного статора и вращающегося внутри него неявно- или явнополюсного ротора, между ними имеется воздушный зазор, радиальный размер которого определяется номинальной мощностью машины, ее быстроходностью и изменяется от долей до нескольких десятков миллиметров.

Статор такой машины по устройству практически не отличается от статора асинхронной машины, имеет трехфазную обмотку, начала фаз которой обозначают C1, С2, С3 и концы — С4, С5, С6 и выводят к зажимам с аналогичными обозначениями, что позволяет соединять фазы обмотки статора треугольником или звездой.

Фазы обмотки статора трехфазного синхронного генератора соединяют преимущественно звездой, так как это позволяет при трехфазной четырех проводной сети располагать линейными и фазными напряжениями, отличающимися друг от друга в √ 3 раз (рис. 1).

Рис. 1. Схема присоединении трехфазной четырехфазной сети к зажимам обмотки статора трехфазного синхронного генератора при соединении фаз звездой.

Ротор синхронной машины представляет собой электромагнитную систему постоянного тока с обмоткой, имеющей то же число полюсов, что и трехфазная обмотка статора. Магнитные силовые линии замыкаются между соответствующими северными и южными полюсами ротора через воздушный зазор и мапштопровод статора (рис. 2, а, б).

Обмотка ротора, или обмотка возбуждения, получает питание от выпрямителя или небольшого генератора постоянного тока — возбудителя, мощность которого составляет 0,5 — 10% номинальной мощности синхронной машины. Возбудитель может находиться на одном валу с синхронной машиной, приводиться от ее вала гибкой передачей или иметь привод от отдельного двигателя.

Неявнополюспый ротор синхронной машины — сплошной или составной цилиндр из углеродистой или легированной стали с пазами, профрезерованными на его поверхности в осевом направлении. В эти пазы уложена обмотка, выполненная изолированным медным или алюминиевым проводом. Начало И1 и конец И2 этой обмотки присоединяют к двум контактным кольцам, укрепленным на втулке из изолятора, расположенной: на валу машины, и вращающихся вместе с ротором.

К кольцам прижаты неподвижные щетки, от которых выведены провода к зажимам с маркировкой И1 и И2 для присоединения к источнику электрической энергии постоянного тока. Большие зубья цилиндра ротора, в которых нет пазов, образуют полюсы ротора.

Неявнополюсный ротор обычно имеет два или четыре полюса с чередующейся полярностью, его используют в быстроходных синхронных машинах, в частности в турбогенераторах — трехфазных синхронных генераторах, непосредственно соединенных с паровыми турбинами, рассчитанными на частоту вращении 3000 или 1500 оборотов в минуту при частоте переменного тока 50 Гц.

Рис. 2. Устройство трехфазной синхронной машины с ротором: а — неявнополюсным, б — явнополюсным, 1 — станина, 2 — магнитопровод статора, 3 — проводники статора, 4 — воздушный зазор, 5 — полюс ротора, 6 — полюсный наконечник, 7 — праведники ротора, 8 — катушечная обмотка возбуждения, 9 — короткозамкнутая обмотка, 10 — контактные кольца, 11 — щетки, 12 — вал.

Явнополюсный ротор синхронной машины с числом полюсов от четырех и более имеет массивное или шихтованное из стальных листов ярмо, на котором крепятся аналогичной конструкции стальные полюсы, имеющие прямоугольное сечение, заканчивающиеся наконечниками (рис. 2, б). На полюсах расположены соединенные между собой катушки, образующие обмотку возбуждении.

Такой ротор применяют в тихоходных синхронных машинах, которыми могут быть гидрогенераторы и и дизельгенераторы — трехфазные синхронные генераторы, непосредственно соединенные соответственно с гидравлическими турбинами или двигателями внутреннего сгорания, рассчитанными на частоту вращения 1500, 1000, 750 и ниже оборотов в минуту при частоте переменного тока 50 Гц.

Многие синхронные машины имеют на роторе помимо обмотки возбуждения еще медную или латунную короткозамкнутую успокоительную обмотку, которая в неявнополюсном роторе мало отличается от аналогичной обмотки ротора асинхронной машины, а в явнополюсном роторе она выполняется в виде неполной короткозамкнутой обмотки, стержни которой заложены только в пазы полюсных наконечников и отсутствуют в междуполюсном пространстве. Эта обмотка способствует затуханию колебаний ротора при неустановившихся режимах синхронной машины, а также обеспечивает асинхронный пуск синхронных двигателей.

Синхронные машины номинальной мощностью до 5 кВт иногда изготавливают в обращенном исполнении с обмоткой возбуждения на статоре и трехфазной обмоткой на роторе.

Эффективность работы трехфазного синхронного генератора

Работа трехфазных синхронных машин в генераторном режиме сопровождается потерями энергии, которые но своему характеру аналогичны потерям в асинхронных машинах. В связи с этим эффективность работы трехфазного синхронного генератора характеризуется значением коэффициента полезного действия (кпд), который в условиях симметричной нагрузки определяется по формуле:

η = ( √3 UIcosφ)/( √3 UIcosφ+ΔP) ,

где U и I — действующие, линейные напряжение и ток, cosφ — коэффициент мощности приемников, ΔP — суммарные потери, отвечающие данной нагрузке синхронной машины.

Величина коэффициента полезного действия (кпд) синхронных генераторов зависит от величины нагрузки и коэффициента мощности приемников (рис 3).

Рис. 3. Графики зависимости коэффициента полезного действия трехфазного синхронного генератора от нагрузки и коэффициента мощности приемников.

Максимальное значение кпд соответствует нагрузке, близкой к номинальной, и составляет для машин средней мощности 0,88-0,92, а для генераторов большой мощности доходит до значения 0,96-0,99. Несмотря на высокое значение кпд в крупных синхронных машинах из-за большого количества выделяемого тепла приходится применять охлаждение обмоток водородом, дистиллированной водой или трансформаторным маслом, что способствуют лучшему отводу тепла, а также позволяет создавать более компактные и эффективные трехфазные синхронные машины.

Читайте также:  Как нарисовать ремонт машины

Что такое синхронный двигатель и как он работает?

В качестве устройства преобразования электрической энергии в механическую в промышленности и быту используется синхронный электродвигатель. В сравнении с другими типами электрических машин он получил меньшее распространение, но в отведенных сферах является незаменимым фаворитом. В чем особенность синхронных агрегатов и как их применяют на практике, мы рассмотрим в данной статье.

Устройство

Конструктивно синхронный электродвигатель состоит из неподвижного элемента, подвижной части, обмоток различного назначения, может комплектоваться коллекторным узлом. Далее рассмотрим каждую составляющую синхронного агрегата более детально на рабочем примере (рисунок 1).

Рис. 1. Устройство синхронного электродвигателя

  • Статор или якорь – выполняется из электротехнической стали монолитным или наборным из шихтованного железа. Предназначен для размещения рабочей обмотки, проводит силовые линии электромагнитного поля, формируемого протекающими токами.
  • Обмотка на статоре – изготавливается из медных проводников, в зависимости от типа статора синхронного электродвигателя может выполняться различными методами, способами намотки и расположения проводников. Применяется для подачи напряжения питания и формирования рабочего магнитного потока.
  • Ротор с обмоткой возбуждения – предназначен для взаимодействия с магнитным полем статора. В результате подачи напряжения на обмотку возбуждения в роторе электродвигателя создается собственное магнитное поле, задающее состояние вращающегося элемента.
  • Вал – используется для передачи вращательного усилия от электродвигателя к подключаемой к нему нагрузке. В большинстве случаев это основание, на котором крепиться шихтовка или полюса ротора, подшипники, кольца, пластины и другие вспомогательные элементы.
  • Контактные кольца – применяются для подачи питания на обмотки ротора, но устанавливаются не во всех моделях синхронных агрегатов. Питание производиться через специальный преобразователь переменного напряжения в постоянное.
  • Корпус – предназначен для защиты от воздействия внешних факторов, обеспечивает синхронному двигателю достаточную прочность и герметичность, в зависимости от условий его эксплуатации.

Принцип работы

В основе работы синхронного электродвигателя лежит взаимодействие магнитного потока, генерируемого рабочими обмотками с постоянным магнитным потоком. Наиболее распространенной моделью синхронной электрической машины является вариант с рабочей обмоткой на статоре и обмоткой возбуждения на роторе.

Рис. 2. Принцип действия синхронного электродвигателя

Как видите на рисунке 2 выше, в обмотку статора подается трехфазное напряжение из сети, которое формирует переменное магнитное поле. На обмотки ротора электродвигателя подано постоянное напряжение, которое индуцирует такой же постоянный магнитный поток у полюсов. Для наглядности рассмотрим процесс на упрощенной модели синхронного агрегата (рисунок 3).

Рис. 3. Принцип формирования потоков в синхронной электрической машине

При подаче питания на фазные витки статора электродвигателя первый пик амплитуды тока и ЭДС взаимоиндукции приходиться на фазу A, затем B и фазу C.

На графике показана периодичность чередования кривых в зависимости от времени:

  • в точке 1 максимальная ЭДС EA формирует максимальный поток, а электродвижущие силы фаз EB и EC равны между собой и противоположны по знаку, они дополняют результирующую силу.
  • в точке 2 пика достигает ЭДС EB, а электродвижущие силы фаз EA и EC становятся равны между собой и противоположны по знаку, они дополняют результирующую силу, в результате чего магнитное поле совершает вращательное движение.
  • в точке 3 максимум приходиться на ЭДС EC, а электродвижущие силы фаз EB и EA вместе дополняют результирующую силу и снова смещают вектор поля по часовой стрелке.

Оборот поля статора происходит в течении периода, а за счет того, что ротор обладает собственным электромагнитным усилием постоянным во времени, то он синхронно следует за движением переменного магнитного поля, вращаясь вокруг заданной оси. В результате такого вращения происходит синхронное движение ротора вслед за сменой амплитуды ЭДС в витках рабочих обмоток, за счет этого явления электродвигатель и получил название синхронного. Наличие отдельного питания отразилось и на схематическом обозначении таких электрических машин (рисунок 4) в соответствии с ГОСТ 2.722-68.

Рис. 4. Схематическое обозначение синхронного электродвигателя

Отличие от асинхронного двигателя

Основным отличием синхронного электродвигателя от асинхронного заключается в принципе преобразования электрической энергии в механическое вращение. У синхронного электродвигателя процесс вращения ротора идентичен вращению рабочего электромагнитного поля, вырабатываемого трехфазной сетью. А вот у асинхронного рабочее поле самостоятельно наводит ЭДС в роторе, которая уже затем вырабатывает собственный поток взаимоиндукции и приводит вал во вращение. В результате чего асинхронные электрические машины получают разность во вращении рабочего поля и нагрузки на валу, что выражается физической величиной – скольжением.

В работе классические модели асинхронных электродвигателей с короткозамкнутым ротором:

  • плохо переносят перегрузки;
  • имеют сложности пуска со значительным усилием;
  • меняют скорость вращения, в зависимости от нагруженности рабочего органа.

В некоторой степени эти недостатки преодолевает асинхронный двигатель с фазным ротором, но в полной мере избавиться от недостатков получается лишь синхронному агрегату.

Рис. 5. Отличие асинхронного от синхронного электродвигателя

Разновидности

В современной промышленности и бытовых приборах синхронные электродвигатели используются для решения самых разнообразных задач. Как результат, существенно разнятся и их конструктивные особенности. На практике выделяют несколько критериев, по которым разделяются виды синхронных агрегатов. В соответствии с ГОСТ 16264.2-85 могут подразделяться по таким техническим характеристикам:

  • питающему напряжению;
  • частоте рабочего напряжения;
  • количеству оборотов.

В зависимости от способа получения поля ротора выделяют такие типы синхронных электродвигателей:

  • С обмоткой возбуждения на роторе – синхронизирующее усилие создается за счет подачи питания от преобразователя.
  • С магнитным ротором – на валу устанавливается постоянный магнит, выполняющий те же функции, что и обмотка возбуждении, но без необходимости подпитки (см. рисунок 6).
Читайте также:  Тест драйв азлк 2141

Рис. 6. Синхронный электродвигатель с постоянными магнитами

С реактивным ротором — конструкция выполнена таким образом, что в его сердечнике происходит преломление магнитных линий, приводящее всю конструкцию в движение (см. рисунок 7). Под воздействием силового поля поперечные и продольные составляющие в роторе не равны за счет чего пластины поворачиваются вслед за полем.

Рис. 7. Пример реактивного ротора

В зависимости от наличия полюсов все синхронные электродвигатели можно подразделить на:

  • явнополюсные – в конструкции четко видны обособленные полюса с обмотками, применяются для малых скоростей;
  • неявнополюсные – полюс не выделяется, такие модели устанавливают для высоких скоростей;

В зависимости от расположения рабочих обмоток различают прямые (на статоре) и обращенные (рабочие обмотки на роторе).

Режимы работы

Большинство электрических машин обладают обратимой функцией, не составляют исключения и синхронные агрегаты. Их также можно использовать в качестве электрического привода или в качестве генератора, вырабатывающего электроэнергию. Оба режима отличаются способом воздействия на электрическую машину – подачу напряжения на рабочие обмотки или приведение в движение ротора за счет механического усилия.

Генераторный режим

Для производства электроэнергии в сеть используются именно синхронные генераторы. В большинстве случаев для этой цели используются электрические машины с фазными обмотками на статоре, что существенно упрощает процесс съема мощности и дальнейшей передачи ее в сеть. Физически генерация происходит при воздействии электромагнитного поля обмотки возбуждения синхронного генератора с обмотками статора. Силовые линии поочередно пересекают фазные витки и наводят в них ЭДС взаимоиндукции, в результате чего на клеммных выводах возникает напряжение.

Частота получаемого напряжения напрямую зависит от скорости вращения вала и вычисляется по формуле:

f = (n*p)/60 ,

где n – скорость вращения вала, измеряемая в оборотах за минуту, p – количество пар полюсов.

Синхронный компенсатор

В виду физических особенностей синхронного электродвигателя при холостом ходе аппарата он потребляет из сети реактивную мощность, что позволяет существенно улучшить cosφ системы, практически приближая его к 1.На практике режим синхронного компенсатора используется как для улучшения коэффициента мощности, так и для стабилизации параметров напряжения сети.

Двигательный режим

В синхронной машине двигательный режим осуществляется при подаче рабочего трехфазного напряжения на обмотки якоря. После чего электромагнитное поле якоря начинает толкать магнитное поле ротора, и вал приходит во вращение. Однако на практике двигательный режим осуществляется не так просто, так как мощные агрегаты не могут самостоятельно набрать необходимый ресурс скорости. Поэтому во время запуска используют специальные методы и схемы подключения.

Способы пуска и схемы подключения

Для запуска синхронного электродвигателя требуется дополнительное поле, независимое от воздействия сети. В то же время, на стартовом этапе запуск представляет собой асинхронный процесс, пока агрегат не достигнет синхронной скорости.

Рис. 8. Схема пуска синхронного двигателя

При подаче напряжения на якорь возникает ток в его обмотках и генерация ЭДС в железе ротора, который обеспечивает асинхронное движение до того момента, пока не начнется питание обмоток возбуждения.

Еще одним распространенным вариантом пуска является использование дополнительных генераторов, которые могут располагаться на валу или устанавливаться отдельно. Такой метод обеспечивает дополнительное стартовое усилие за счет стороннего крутящего момента.

Рис. 9. Генераторный способ пуска синхронного двигателя

Как видите на рисунке 9, начальное вращение мотора М осуществляется за счет генератора G, который призван вывести устройство на подсинхронную скорость. Затем генератор выводится из рабочей цепи путем размыкания контактов КМ или автоматически при установке рабочих характеристик. Дальнейшее поддержание синхронного режима происходит за счет подачи постоянного напряжения в обмотку возбуждения.

Помимо этого на практике используется схема пуска с полупроводниковыми преобразователями. На рисунке 10 приведен способ тиристорного преобразователя и с установкой вращающихся выпрямителей.

Рис. 10. Тиристорная схема пуска синхронного двигателя

В первом случае запуск синхронного электродвигателя характеризуется нулевым напряжением от преобразователя UD. За счет ЭДС скольжения через стабилитроны VD осуществляется открытие тиристоров VS. В цепь обмотки возбуждения вводится резистор R, предназначенный для предотвращения пробоя изоляции. По мере разгона электродвигателя ЭДС скольжения пропорционально снизится и произойдет запирание стабилитронов VD, цепочка заблокируется, и обмотка возбуждения получит питание постоянным напряжением через UD.

Применение

Область применения синхронных электрических машин охватывает производство электрической энергии на электростанциях. По видам генераторы подразделяются на турбинные, дизельные и гидравлические, в зависимости от способа приведения их во вращение.

Также их используют в качестве электродвигателей, которые могут переносить существенные перегрузки в процессе эксплуатации. Такие двигатели устанавливаются на вентиляторах, компрессорах, силовых агрегатах и прочем оборудовании. Отдельная категория электродвигателей применяется в точном оборудовании, где важна синхронизация операций и процессов.

Преимущества и недостатки

К преимуществам такого электродвигателя следует отнести:

  • высокий cosφ, приближающийся по величине к 1, что в значительной мере превосходит асинхронные электродвигатели;
  • более высокая механическая прочность за счет особенностей конструкции электродвигателя;
  • зависимость момента вращения от напряжения линейная, а не квадратичная, поэтому колебания электродвигателя пропорционально снижаются;
  • на валу электродвигателя присутствует постоянная скорость, не зависящая от прикладываемой нагрузки;
  • может применяться для уменьшения реактивной составляющей в сети.

Среди недостатков синхронных электродвигателей выделяют:

  • сложную конструкцию;
  • более сложный пуск;
  • необходимость использования вспомогательных устройств и блоков;
  • такие электродвигатели сложнее регулировать по числу оборотов;
  • ремонт и обслуживание также обойдется дороже, чем асинхронные электродвигатели.

Видео версия

Оцените статью